Chứng minh với mọi giá trị của x ta có:\(\frac{x^2+4x+9}{\sqrt{x^2+4x+8}}\ge\frac{5}{2}\)
cho 2 số dương x;y thỏa mãn điều kiện: \(x+y\le1\)
chứng minh: \(x^2-\dfrac{3}{4x}-\dfrac{x}{y}\le\dfrac{-9}{4}\)
\(\left\{{}\begin{matrix}3x-6\sqrt{2x-4}=4\sqrt{3y-9}-2y\\6x^3-3x^2y+2xy+4=y^2+4x+6x^2\end{matrix}\right.\)
Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
Câu 1:Giải phương trình:
(3-x)căn((3+x)(9+x^2))=4 căn(5(3-x))
Câu 2:Tính x/y biết x>1,y<0 và (x+y)(x^3-y^3)căn((1-căn(4x-1))^2)/(1-căn(4x-1))(x^2y^2+xy^3+y^4)
\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
Giải HPT sau : \(\left\{{}\begin{matrix}\sqrt{4x-1}+\frac{y}{2y+3}=1\\\sqrt{36x-9}+\frac{3}{2y+3}=-1\end{matrix}\right.\)
giải phương trình :\(4x^3+4x^2-5x+9=4\sqrt[4]{16x+8}\)