Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Hương Trà

chứng minh:

a,x*(2x+7)=0

b,x*(2x+7)>0

c,x*(2x+7)<0

Nguyễn Đức Trí
25 tháng 8 2023 lúc 20:12

a) \(x\left(2x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b) \(x\left(2x+7\right)>0\)

\(TH1:\left\{{}\begin{matrix}x>0\\2x+7>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x>-\dfrac{7}{2}\end{matrix}\right.\) \(\Leftrightarrow x>0\)

\(TH2:\left\{{}\begin{matrix}x< 0\\2x+7< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x< -\dfrac{7}{2}\end{matrix}\right.\) \(\Leftrightarrow x< -\dfrac{7}{2}\)

Vậy \(x>0\) hay \(x< -\dfrac{7}{2}\)

c) \(x\left(2x+7\right)< 0\)

\(TH1:\left\{{}\begin{matrix}x>0\\2x+7< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x< -\dfrac{7}{2}\end{matrix}\right.\) (Vô lý nên loại)

\(TH2:\left\{{}\begin{matrix}x< 0\\2x+7>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x>-\dfrac{7}{2}\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{7}{2}< x< 0\)

Vậy \(-\dfrac{7}{2}< x< 0\)


Các câu hỏi tương tự
Nguyễn Thu Thủy
Xem chi tiết
Lã Thị Dự
Xem chi tiết
Lê hoàng khánh
Xem chi tiết
Du Miên
Xem chi tiết
Phan Viết Học
Xem chi tiết
Tuyết Nhung
Xem chi tiết
Hồ Phạm Hạnh Nguyên
Xem chi tiết
Minnie_YM
Xem chi tiết
nguyen ha
Xem chi tiết