Chứng minh
8(a+b+c)^3-(a+b)^3-(b+c)^3-(c+a)^3=3(c+b+2a)(c+2b+a)(2c+b+a)
chứng minh đẳng thức
a) cho \(x+y+z=0\) chứng minh rằng \(x^3+x^2z+y^2z-xyz+y^3=0\)
b) \(\left(a+b+c\right)^3-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
c) \(a^3+b^3+c^3=3abc\) với a+b+c=0
Cho \(a^3+b^3+c^3=3abc.\) Chứng minh: a+b+c = 0 hoặc a = b =c
Chứng minh rằng nếu a3+b3+c3=3abc và a, b, c là các số dương thì a=b=c
Chứng minh rằng:
\(2\left(a^3+b^3+c^3-3abc\right)=\left(a+b+c\right)[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2]\)
Cho a + b + c = 0. Chứng minh a3 + b3 + c3 = 3abc.
cho a+b+c=0.Chứng minh a3+b3+c3=3abc
cho a+b+c=0. chứng minh : a3+b3+c3=3abc
1. Cho các số nguyên a, b, c. CMR
Nếu a+b+c chia hết cho 30 thì \(a^5+b^5+c^5\)chia hết cho 30
2.Cho các số nguyên a, b, c thỏa mãn a+b+c=0. CMR
a,\(a^3+b^3+c^3⋮3abc\)
b,\(a^5+b^5+c^5⋮5abc\)
3. Viết số 1998 thành tổng 3 số tự nhiên tùy ý. Chứng minh rằng tổng các lập phương của 3 số tự nhiên đó chia hết cho 6
4. Chứng minh rằng với mọi số nguyên a và b
a,\(a^3b-ab^3⋮6\)
b, \(a^5b-ab^5⋮30\)
5.Chứng minh rằng mọi số tự nhiên đều được viết dưới dạng \(b^3+6c\) trong đó b và c là các số nguyên
6.chứng minh rằng tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
7. Chứng minh rằng nếu tổng các lập phương của 3 số nguyên chia hết cho 9 thì tồn tại một trong 3 số đó là bội của 3