1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
chứng minh các bất đẳng thức:
a/ 1/2^2+1/3^2+1/4^2+...+1/n^2<1 với mọi số tự nhiên n>=2
b/1/2^2+1/3^2+1/6^2+...+1/(2n)^2<1/2 với mọi n thuộc N, n>=2
1. Chứng minh :3^n >= n^3 với mọi n thuộc N*
2. Cho a+b+c=1. Chứng minh: a^2 + b^2 + c^2 >=1/3
chứng minh rằng với n thuộc N,n>1 ta có A=1/n+1/(n+1)+1/(n+2)+1/(n+3)+...+1/n^2>1
chứng minh rằng với n thuộc N,n>1 ta có A=1/n+1/(n+1)+1/(n+2)+1/(n+3)+...+1/n^2>1
1; Chứng minh:
a) (x-1)(x^2+x+1)=x^3-1
b)(x^3+x^2y+xy^2+y^3)(x-y)=x^4-y^4
2; Chứng minh biểu thức: n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
Ai biết giúp mình với nha!!!!!!!!!!!!!!
Chứng minh với n thuộc N, n lớn hơn hoặc bằng 2 có 1//2^3 + 1/3^3 +...+ 1/n^3 bé hơn 1/4
Chứng minh rằng với mọi số nguyên n thì
(n2+3n-1)(n+2)-n3+2 chia hết cho 5
n(n+5)-(n-3)(n+2) chia hết cho 6
(n-1)(n+1)-(n-7)(n-5) chia hết cho 12
câu 1 :chứng minh : nn-n^2+n-1 chia hết cho (n-1)^2 với n là số nguyên lớn hơn 1
câu 2 : chứng minh với n lẻ n thuộc N* thì 1^n+2^n+3^n+...+n^n chia hết cho 1+2+3+...+n
câu3: có tồn tại số tự nhiên n để n^2+3n+39 và n^2+n+37 đồng thời chia hết cho 49 không?