\(\sqrt{xy}\left(x-y\right)=x+y\)
<=>\(x-y=\frac{x+y}{\sqrt{xy}}\)
<=>\(\left(x-y\right)^2=\frac{\left(x+y\right)^2}{xy}\)
<=>\(\left(x+y\right)^2=\frac{\left(x+y\right)^2}{xy}+4xy\ge2\sqrt{\frac{\left(x+y\right)^2}{xy}.4xy}=4\left(x+y\right)\)
=> \(x+y\ge4\)(ĐPCM)