Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn ngọc phương linh

Cho x ; y ; z là các số thực dương thỏa mãn x + y + z =xyz

Chứng  minh rằng : \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1-\sqrt{1+z^2}}{z}\le\)xyz

Huhuu giúp mk với !!! Ai bt ko giúp mk điii

nguyễn ngọc phương linh
1 tháng 11 2019 lúc 21:22

Á nhầm nhaaa cái cuối cùng là cộng z2 đó

Khách vãng lai đã xóa
Thanh Tùng DZ
1 tháng 11 2019 lúc 21:24

Ta có :

\(\frac{1+\sqrt{1+x^2}}{x}=\frac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\frac{2+\frac{4+1+x^2}{2}}{2x}=\frac{9+x^2}{4x}\)

tương tự : \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{9+y^2}{4y}\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{9+z^2}{4z}\)

\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le\frac{\left(9+x^2\right)yz+\left(9+y^2\right)xz+\left(9+z^2\right)xy}{4xyz}\)

\(=\frac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\frac{9\frac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=\frac{4\left(xyz\right)^2}{4xyz}=xyz\)

Dấu " = " xảy ra khi x = y = z = \(\sqrt{3}\)

Khách vãng lai đã xóa
Giao Khánh Linh
1 tháng 11 2019 lúc 21:36

Ta có: \(\frac{1+\sqrt{1+x^2}}{x}=\frac{1+\sqrt{1\times\left(1+x^2\right)}}{x}\le\frac{1+\frac{1+1+x^2}{2}}{x}=\frac{2+\frac{x^2}{2}}{x}=\frac{2}{x}+\frac{x}{2}\)(Áp dụng bđt Cauchy ở chỗ \(\sqrt{1\times\left(1+x^2\right)}\)

Tương tự với b,c . Ta được VT\(\le\)\(\frac{x}{2}+\frac{y}{2}+\frac{z}{2}+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)

\(\le\)\(\frac{x+y+z}{2}\)\(\frac{2xy+2yz+2xz}{xyz}\)\(\frac{x+y+z}{2}\)\(\frac{4xy+4yz+4xz}{2xyz}\)\(\frac{xyz}{2}+\frac{4xy+4yz+4xz}{2xyz}\)

Ta chứng minh được \(4xy+4yz+4xz\le\left(x+y+z\right)^2\)bằng phương pháp biến đổi tương đương

=> VT \(\le\)\(\frac{xyz}{2}+\frac{\left(x+y+z\right)^2}{2xyz}=\frac{xyz}{2}+\frac{\left(xyz\right)^2}{2xyz}=\frac{xyz}{2}+\frac{xyz}{2}=xyz\)(Điều phải cm)

Dấu = xảy ra <=> 

Khách vãng lai đã xóa
Giao Khánh Linh
1 tháng 11 2019 lúc 21:46

Ohh, tui sai ngay từ đầu luônnn

Khách vãng lai đã xóa

Các câu hỏi tương tự
Khôi 2k9
Xem chi tiết
Võ Nhật Minh
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Love
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Trân Vũ Mai Ngọc
Xem chi tiết
Nguyễn Minh Toàn
Xem chi tiết
Huy Đào Quang
Xem chi tiết
Trần Thùy
Xem chi tiết