Cho tam giác ABC có các phân giác BE, CF cắt nhau tại O. Chứng minh rằng điều kiện cần và đủ để số đo góc A bằng 90 độ là: BO.CO=BE.CF/2
Cho tam giác ABC có các phân giác BE, CF cắt nhau tại O. Chứng minh rằng điều kiện cần và đủ để số đo góc A bằng 90 độ là: \(BO.CO=\dfrac{BE.CF}{2}\)
Cho hình bình hành ABCD (góc A lớn hơn 90 độ). Phân giác góc A cắt BD tại M, phân giác góc D cắt AC tại N. CHứng minh:
a) MN song song với AD
b) \(S_{\Delta OMN}.S_{\Delta OAD}=S^2_{\Delta AMO}\)
Câu 4 :
1.Cho tam giác nhọn ABC ( AB < AC ) có hai đường cao BM và CN cắt nhau tại H . Đường thẳng vuông góc với AC tại C cắt đường thẳng vuông góc với AB tại B ở D
a, CHứng minh tứ giác BHCD là hình bình hành
b, Gọi O là trung điểm của đoạn thẳng AD . Qua điểm O kẻ đường thẳng vuông góc với AH cắt BC tại K . Chứng minh K là trung điểm của BC và tính độ dài đoạn thẳng OK biết AH=6cm
2.Cho tam giác ABC có các đường phân giác BD , CE cắt nhau tại I và BD.CE=2BI.CI . Tính số đo \(\widehat{BAC}\)
Cho tứ giác ABCD có A = C = 90 độ. Vẽ CH vuông góc AB. Biết rằng đường chéo AC là đường phân giác góc A và CH = 6 cm. Tính diện tích tứ giác ABCD
Cho tam giác ABC có góc B là góc nhọn. Gọi D là điểm đối xứng của B qua trung điểm của AC. Gọi H, K lần lượt là hình chiếu vuông góc của A trên hai đường thẳng BC, CD. Khi góc B bằng 30 độ. Tính tỉ số diện tích tam giác AHK và diện tích hình bình hành ABCD
Cho tam giác ABC có góc B là góc nhọn. Gọi D là điểm đối xứng của B qua trung điểm của AC. Gọi H, K lần lượt là hình chiếu vuông góc của A trên hai đường thẳng BC, CD. Khi góc B bằng 30 độ. Tính tỉ số diện tích tam giác AHK và diện tích hình bình hành ABCD
Cho tam giác ABC có góc B là góc nhọn. Gọi D là điểm đối xứng của B qua trung điểm của AC. Gọi H, K lần lượt là hình chiếu vuông góc của A trên hai đường thẳng BC, CD. Khi góc B bằng 30 độ. Tính tỉ số diện tích tam giác AHK và diện tích hình bình hành ABCD