Cho tam giác ABC nhọn, vẽ ra phía ngoài tam giac ABC các tam giac đều ABD, ACE. gọi I và P lần lượt là trung điểm của AD và CE. Điểm F nằm trên BC sao cho BF=3*FC. Tính FBI
Cho △ABC vẽ các tam giác đều ABD và ACE ra phía ngoài △ABC. Nối BE và CD. Gọi M, N là trung điểm của BE và CD.
CMR:△AMN là tam giác đều
Cho tam giác ABC cân tại A, gọi M, N lần lượt là trung điểm của AB, AC. Các đường trung trực của AB, AC cắt nhau tại O. a) Chứng minh AD là phân giác của góc BAC. b) Chứng minh tam giác OBC cân c) Chứng minh MN // BC. d) Chứng minh AO vuông góc với MN.
1. Cho tam giác đều ABC.Vẽ ra phía ngoài hai tam giác vuông cân ABD và ACE tại D và E. Gọi I là giao điểm của BE và CD a) CM: BE=CD b)Tính góc BIC
Cho tam giác ABC đều. Vẽ bên ngoài tam giác này hai tam giác vuông cân: ∆ABD vuông cân tại B, ∆ACE vuông cân tại C. Chứng minh rằng: a) ∆ABD = ∆ACE b) ∆ADE cân c) Tính số đo các góc ∆ADE
Cho tam giác ABC vuông tại A có góc ACB =60°. Trên cạnh BC lấy điểm D sao cho CA=CD. Gọi M là trung điểm của AD:
a, tính góc ABC và chứng tỏ tam giác ACD là tam giác cân
b, Chứng minh: tam giác ACM = tam giác DCM
c, Gọi P là giao điểm của CM và AB. Chứng minh: DP vuông góc BC
Cho tam giác ABC cân tại A vẽ AH vuông góc với BC tại H.Biết AB=10cm;BH==6cm
a)tính AH
b)tam giác ABD = tam giác ACH
c) trên BA lấy D,CA lấy E sao cho BD = CE . Chứng minh tam giác HDE cân
d) Chứng minh AH là trung trực của DE