Cho tam giác ABC vuông tại A đường cao AH gọi E và F lần lượt là chân các đường vuông góc hạ từ H đến AB và AC a, tứ giác AEHF là hình gì? Vì sao? b, lấy điểm M đối xứng với H qua E chứng minh tứ giác AMEF là hình bình hành C, gọi I là trung điểm của AE . HI giao với AM tại K chứng minh AK =1/3 AH d, gọi N là trung điểm của BC chứng minh EF vuông góc với AN
Cho tam giác ABC vuông tại A có M và N lần lượt là trung điểm của các cạnh BC và AC. Gọi Dlà điểm đối xứng với M qua N.
1) Chứng minh tứ giác ADCM là hình thoi.
2) Gọi I là trung điểm của đoạn thẳng AM Chứng minh rằng B,I,D thẳng hàng.
3) Qua D kẻ đường thẳng song song với AC, cắt đường thẳng BC tại E. Đường thẳng IN cắt DE tại F. Tìm điều kiện của tam giác ABC để tứgiác MNFE là hình thang cân
Cho tam giác ABC vuông tại A đường cao AH . gọi E,F lần lượt là chân đường vuông góc . kẻ từ H đến AB,AC
a/ Tứ giác EAFH là hình gì?
b/ Qua A kẻ đường vuông góc với EF cắt BC ở I . chứng minh I là trung điểm BC. Giúp mik vs 😥
Cho tam giác MNP vuông tại M , đường cao MH . Gọi D,E là chân đường vuông góc hạ từ H xuống MN và MP
a) Chứng minh tứ giác MDHE là hình chữ nhật
b) Gọi A là trung điểm của HP . Chứng minh tam giác DEA vuông
c) T am giác MNP cần thêm điều kiện gì để DE = 2EA
Cho tam giác ABC nhọn có trục tâm H. Các đường vuông góc với AB tại B và vuông góc với AC tại C cắt nhau tại D.
a) Chứng minh tứ giác BDCH là hình bình hành.
b) Gọi M là trung điểm của BC. Chứng minh ba điểm H, M, D thẳng hàng.
c) Chứng minh 4 điểm A, B, D, C cách đều một điểm.
d) Tìm điều kiện của tam giác ABC để tứ giác BDCH là hình thoi.
Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là đường trung điểm của GB, K là trung điểm của GC.
a. Chứng minh: Tứ giác DEHK là hình bình hành.
b. Nếu tam giác ABC cân tại A. Chứng minh: BD=CE và DEHK là hình chữ nhật.
Cho tam giác ABC nhọn, đường cao AH, CK. Kẻ AD và CE vuông góc HK. Gọi N là trung điểm của AC. Chứng minh HN = KN và DK = HE
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GC
a) Chứng minh rằng tứ giác DEHK là hình bình hành
b) Tam giác ABC có điều kiện gì thì tứ giác DEHK là hình chữ nhật
c) Nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình gì ?
Cho Tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm BC. Từ M dựng đường thẳng vuông góc với AB và AC, cắt AB và AC lần lượt tại I và K. a) Biết BC = 10cm. Tính IK và chứng minh tứ giác AIMK là hình chữ nhật. b) Trên tia MI lấy điểm E sao cho I là trung điểm ME, trên tia MK lấy điểm F sao cho K là trung điểm MF. Chứng minh K là trung điểm AC và tứ giác EMCA là hình bình hành. c) Chứng minh tứ giác AMCF là hình thoi. d) Kẻ AH ⊥ BC tại H. Giả sử IK = 2.HM. Tính số đo góc ABC