* Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy điểm M,N sao cho góc AMC= góc ANB= \(90^0\). Chứng minh:AM=AN
* Cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{AB}{AC}=\dfrac{20}{21}\)và AH=420. Tính chu vi tam giác ABC
Cho tam giác ABC có AB= 12 cm , AC =16 cm . Từ B kẻ đường thẳng vuông góc với BC , đường thẳng này cắt đường thẳng AC tại E . a) Tính các cạnh của tam giác BCE b) Tính góc BEA( làm tròn lên độ) c) lấy điểm F nằm giữa B và E . TỪ b kẻ BH vuông góc với CF, H thuộc CF . CMR : tam giác CEF đồng dạng vs tma giác CHA
Cho tam giác ABC vuông tại A có đường cao AH, biết AB=15, AC= 20cm.
a) Tính BC, AH.
b) Trên đonạ HC lấy D sao cho HD=HB. Tính tan góc ADH và chứng minh: HD.HC=HA^2
c) Trên tia AH lấy điểm E sao cho H là trung điểm của AE. Đường thẳng ED cắt AC tại F. Gọi O là trung điểm của CD. Chứng minh HF vuông góc FO.
d) Đoạn HF cắt AD tại S. Tia CS cắt AH tại K và cắt AB tại M. Chứng minh: AB/AM +AD/AS = AE/AK
Cho ∆ABC vuông tại A, đường cao AH. Biết HB=4cm, CH=9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a, Tính DE
b, Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Chứng minh MN=1/2BC
Bài 2: Cho ΔABC có AB=6cm, AC=8cm, BC=10c, Kẻ đường cao AH của ΔABC.
a) Tính độ dài AH và BH
b)AH=BC.sinB.cosB
c) lấy điểm M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB,AC lần lượt là E và K. Chứng minh : \(\dfrac{1}{AM^2}+\dfrac{1}{AK^2+AE^2}\)
d) Hỏi M ở vị trí nào trên cạnh BC thì EK có độ dài nhỏ nhất
Mọi người ơi, cho em hỏi bài này với ạ, cho tam giác ABC với đường tròn nội tiếp tâm I, kẻ ID, IE, IF lần lượt vuông góc với BC, AC, AB, gọi M, N, P, Q lần lượt là trung điểm BD, CD, CE, BF, MQ cắt NP tại T, chứng minh TB = TC. Em cảm ơn ạ
cho tam giác ABC đều trên AC,AB lấy hai điểm D,E sao cho \(\dfrac{CD}{DA}=\dfrac{AE}{BE}=\dfrac{\sqrt{5}+1}{2}\), BD và CE cắt nhau tại O, Trên BD và CE lấy hai điểm M,N sao cho MN // BC và BN = 2OM, đường thẳng qua O // BC cắt MC tại P . Chứng minh BP là phân giác của góc MBN
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, đường trung tuyến AM (H, M thuộc BC)
1, Cho AB = 6, BC = 10. Tính BH và sin góc ACB
2, Gọi D là điểm đối xứng của A qua M. Chứng mình rằng CD2 = BH.BC
3, Đường thẳng AH cắt hai đường thẳng BD và CD lần lượt tại T và Q. Gọi P là giao điểm của 2 đường thẳng CT và BQ. Chứng mình rằng T là trực tâm của tam giác BCQ
Cho Δ ABC vuông tại A, cạnh AB= 6cm, AC=8cm, Các đường phân giác trong và ngoài tạo B cắt đường thẳng AC theo thứ tự tại E và F. Tính độ dài AE và AF