a: Xét ΔABC vuông tại B và ΔAHK vuông tại H có
góc BAC chung
Do đó: ΔABC\(\sim\)ΔAHK
b: Ta có: ΔABC\(\sim\)ΔAHK
nên BA/HA=BC/HK
hay \(BA\cdot HK=BC\cdot HA\)
a: Xét ΔABC vuông tại B và ΔAHK vuông tại H có
góc BAC chung
Do đó: ΔABC\(\sim\)ΔAHK
b: Ta có: ΔABC\(\sim\)ΔAHK
nên BA/HA=BC/HK
hay \(BA\cdot HK=BC\cdot HA\)
Cho Δ ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh rằng: Δ AEF Δ ABC.
b) Cho AH = 4,8cm; BC = 10cm. Tính SΔAEF?
c) Lấy điểm I đối xứng với H qua AB. Từ B kẻ đường vuông góc với BC cắt AI ở K. Chứng minh rằng KC, AH, EF đồng quy tại một điểm.
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. Từ H kẻ HM vuông góc với AB tại H, HN vuông góc với AC tại N. Gọi I là trung điểm HC, vẽ K đối xứng với A qua I. a,chứng minh AK = MC. b, gọi O là giao điểm của AH và MN , D là giao điểm của AK và CO . từ I kẻ IE // CK(E thuộc AC). chứng minh 3 điểm H,D,E thẳng hàng
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.
a. Chứng minh tứ giác ABDC là hình chữ nhật.
b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.
c. Chứng minh tứ giác AEKC là hình bình hành.
d. Tìm điều kiện để hình thoi AKBE là hình vuông.
Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.
a. Chứng minh: M và E đối xứng nhau qua AB.
b. Chứng minh: AMBE là hình thoi.
c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM
Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH
Cho tam giác ABC nhọn có AB AC, đường cao BH. Từ điểm M trên BC M khác B và C kẻ MD vuông góc với AC tại D vả kẻ MK vuông góc với AB tại K. Gọi E là điểm đối xứng với K qua đường thẳng BCa, C m rằng góc BMK Cho tam giác ABC nhọn có AB AC, đường cao BH.Từ điểm M trên BC M khác B và C kẻ MD vuông góc với AC tại D và kẻ MK vuông góc với AB tại K. Gọi E là điểm điểm đối xứng với k qua đường thẳng BC.a, C m rằng góc BMK góc CMDTừ đó c m 3 điểm E,M,D thẳng hàngb,Tứ giác BEDH là hình gì Tại sao c, So sánh MK MD và BHd, Cho BH= 8cm, CH= 6cm, AC= 12cmTính chiều cao của tam giác ABC được kẻ từ đỉnh A.
Cho tam giác ABC nhọn có AB AC, đường cao BH. Từ điểm M trên BC M khác B và C kẻ MD vuông góc với AC tại D vả kẻ MK vuông góc với AB tại K. Gọi E là điểm đối xứng với K qua đường thẳng BCa, C m rằng góc BMK Cho tam giác ABC nhọn có AB AC, đường cao BH.Từ điểm M trên BC M khác B và C kẻ MD vuông góc với AC tại D và kẻ MK vuông góc với AB tại K. Gọi E là điểm điểm đối xứng với k qua đường thẳng BC.a, C m rằng góc BMK góc CMDTừ đó c m 3 điểm E,M,D thẳng hàngb,Tứ giác BEDH là hình gì Tại sao c, So sánh MK MD và BHd, Cho BH 8cm, CH 6cm, AC 12cmTính chiều cao của tam giác ABC được kẻ từ đỉnh A.
Cho tam giác ABC vuông tại A, đường cao AH. D đối xứng với H qua AB. E đối xứng với H qua AC. Gọi I là giao điểm của AB và DH. K là giao điểm của AC và EH
a) Chứng minh AIHK là hình chữ nhật
b) Chứng minh D, E, A thẳng hàng
c) Gọi m là trung điểm của BC chứng minh AM vuông góc với IK
Cứu với !!!!!
Cho tam giác ABC vuông tại A, đường cao AH. Từ H kẻ HE, HF lần lượt vuông góc với AB, AC.
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) I đối xứng H qua E và K đối xứng H qua F . Chứng minh ba điểm I , A , K thẳng hàng.
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC) a) Chứng minh tứ giác ADHE là hình chữ nhật. b) Gọi I là trung điểm của đoạn thẳng HC. Gọi K là điểm đối xứng với điểm A qua điểm I. Chứng minh rằng AC // HK. c) Chứng minh tứ giác DECK là hình thang cân. d) Gọi O là giao điểm của DE và AH; Gọi M là giao điểm của AI và CO. Chứng minh AM = 1/3 AK
Cho tam giác ABC vuông tại A ( AB<AC). Gọi M là điểm thuộc cạnh huyền BC. Kẻ MI vuông góc với AB tại I. MK vuông góc với AC tại K.
a, CM: AM=IK
b. Gọi H là điểm đối xứng với A qua điểm K. C/minh tứ giác IMHK là hình bình hành.
c, Gọi O là giao điểm của AM và IK; E là giao điểm của MK và IH. Chứng minh OE//AC