a. Vì BD là tia phân giác góc ABE
=> góc ABD = góc EBD
Xét tam giác ABD và tam giác EBD:
BA = BE
góc ABD = góc EBD
BD chung
=> tam giác ABD = tam giác EBD (c-g-c)
=> DA = DE (2 cạnh tương ứng)
b,c. ko có điểm F nên ko chứng minh được
a. Vì BD là tia phân giác góc ABE
=> góc ABD = góc EBD
Xét tam giác ABD và tam giác EBD:
BA = BE
góc ABD = góc EBD
BD chung
=> tam giác ABD = tam giác EBD (c-g-c)
=> DA = DE (2 cạnh tương ứng)
b,c. ko có điểm F nên ko chứng minh được
cho tam giác abc vuông tại A có ^ab = 3cm ^bc = 5cm. Lấy điểm D trên cạnh bc sao cho BD= BA. Kẻ đường thẳng vuông góc với BC tại D cắt AC tại E
a tính độ dài đoạn thẳng AC
b c/m BE là tia phân giác của^ABC
c so sánh AE và EC
d c/m BE là đường trung trực của AD
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Cho tam giác ABC vuông tại A (AB<AC), vẽ đường phân giác BD (D thuộc AC). Trên cạnh huyền BC lấy điểm E sao cho BE=BA
a. Chứng minh DA=DE
b. Từ điểm C vẽ đường thẳng vuông góc với AC và cắt tia BD tại K (góc ACK=90 độ). Chứng minh tam giác CBK là tam giác cân
c. Vẽ CH vuông góc BK (H thuộc BK). Chứng minh CH//EA
d. Chứng minh BD<BC và chứng minh BD<BK
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.
a. Chứng minh: ∆BAD = ∆BED
b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE
c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC
2.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D.
a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC
b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.
c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.
3.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.
a.Chứng minh: ∆ABE = ∆MBE.
b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,
c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC
4
Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.
a) Chứng minh ∆ABM = ∆ACM
b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.
c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng
d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Qua E vẽ đường thẳng d vuông với BC, d cắt AC tại I cắt BA tại F.
a) C/m BI là p/giác của góc ABC
b)C/m BT là trung trực của AE
c) Gọi M là trung điểm của FC. C/m B,I,M thẳng hàng
cho tam giác ABC vuông tại A, có AB=36cm, BC=39cm
a/ Tính độ dài cạnh AC và so sánh các góc tam giác ABC
b/ Trên tia đối tia AC lấy điểm D sao cho A là trung điểm của đoạn thẳng AC
C/M: t/giác ABC = t/giác ABD
c/ Trên tia AC lấy điểm E sao cho C là trung điểm của đoạn AE. Gọi F là trung điểm đoạn AB. Đường EF cắt cạnh BC tại G. Tính độ dài đoạn thẳng BG
d/ Từ C vẽ đường thẳng vuông góc voiwscanhj BD tại M, đường thẳng này cắt cạnh AB tại H, Qua C vẽ đường thẳng vuông góc với cạnh BC, đường thẳng này cắt cạnh BA tại K.
C/M: t/giác CHK cân
Cho tam giác ABC vuông tại A, tia phân giác góc ABC cắt cạnh AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA. Hai đường thẳng AB và DE cắt nhau tại F.
a) C/m tam giác BAD = tam giác BED.
b) C/m tam giác BED là tam giác vuông.
c) C/m tam giác BFC là tam giác cân.
d)C/m BD là đường trung trực của đoạn thẳng FC.
e) Cho AB=3 cm, AC=4cm. Tính FC.
Cho tam giác ABC có AB = AC, tia phân giác của góc BAC cắt BC tại D
a) C/m: tam giác ABD = tam giác ACD. Từ đó suy ra AD vuông góc BC
b)kẻ BE vuông góc AC (E thuộc AC). TRên cạnh AB lấy điểm F sao cho AE = AF. C/m: tam giác AEB = tam giác AFC. Từ đó suy ra CF vuông góc AB.
c)BE cắt AD tại H. C/m: góc AFH = 90độ. Từ dó suy ra ba điểm C,H,F thẳng hàng.
d)C/m: DE = 1/2 BC
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường thẳng vuông góc với BC, cắt AC tại E.
a)C/m: AE=DE
b)C/m:AD la phân giác góc HAC
c)Đường phân giác ngoài tại đỉnh C cắt BE ở K. Tính góc BAK