1: BC=25cm
\(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(BH=\dfrac{225}{25}=9\left(cm\right)\)
2: \(AM\cdot AB=AH^2\)
\(HB\cdot HC=AH^2\)
DO đó: \(AM\cdot AB=HB\cdot HC\)
1: BC=25cm
\(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)
\(BH=\dfrac{225}{25}=9\left(cm\right)\)
2: \(AM\cdot AB=AH^2\)
\(HB\cdot HC=AH^2\)
DO đó: \(AM\cdot AB=HB\cdot HC\)
cho tam giác ABC có 3 góc nhọn ( AB < AC ) và nội tiếp đường tròn ( O ). Vẽ đường cao AH, ( H thuộc BC ) , từ H kẻ HM vuông góc với AB ( M thuộc AB ) và kẻ HN vuông góc với AC ( N thuộc AC ). Vẽ đường kính AE của đường tròn ( O ) cắt MN tại I. Tia MN cắt ( O) tại K. chứng minh rằng
a, AMHN nội tiếp
b, \(\Delta AMN\sim\Delta ACB\)
c, CEIN nội tiếp và tam giác AHK cân
Cho ABC có ba góc nhọn nội tiếp đường tròn tâm O (AB < AC) và AH là đường cao của tam giác. Gọi M, N lần lượt là hình chiếu vuông góc của H lên AB, AC. Kẻ NE vuông góc với AH. Đường thẳng vuông góc với AC kẻ từ C cắt tia AH tại D và AD cắt đường tròn tại F. Chứng minh :
a) ABC + ACB = BIC và tứ giác DENC nội tiếp;
b) AM.AB = AN.AC và tứ giác BFIC là hình thang cân;
c) Tứ giác BMED nội tiếp.
+ Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD
(ko cần vẽ hình)
Cho tam giác ABC vuông tại A có góc B = 60 độ, đường cao AH.
a) Biết BC = 6cm, hãy tính độ dài các đoạn AB, AC, CH?
b) Trên tia đối của tia BA lấy điểm D sao cho DB=BC, từ A kẻ đường thẳng vuông góc với CD tại K. Chứng minh: \(\dfrac{1}{KD.DC}=\dfrac{1}{AC^2}+\dfrac{1}{AD^2}\)
c) Chứng minh: \(\tan D=\dfrac{DB}{DC}\)
Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác của góc B cắt AC tại M. Kẻ AK vuông góc với BM, AH cắt BM tại I. Chứng minh a)IH.IA=IK.IB b)BH.BC=BK.BM c)BHK=BMC
Bài 1: Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Kẻ đường cao AH
a) Giải tam giác vuông ABC (góc làm tròn đến phút).
b) Gọi G, K là hình chiếu của H lần lượt lên AB và AC. Chứng minh rằng: AG.AB=AK.AC
Bài 2: Cho vuông tại A, đường cao AH có , đường cao AH có HB=9cm,HC=16cm
a) Tính AB, AC và AH.
b) Hạ HD vuông góc AB,HE vuông góc AC . Tính chu vi và diện tích tứ giác ADHE.
Cho tam giác ABC vuông tại A, kẻ đường cao AH và phân giác BE (H thuộc BC, E thuộc AC) Kẻ AD vuông góc BE ( D thuộc BE)
a) CM ADHB nội tiếp trong 1 đường tròn. Xác định tâm O của đường tròn đó
b) CM ^EAD= ^HBDvà OD // HB
c) biết góc ABC=60 độ , và AB = a ( a>0) Tính theo a phần diện tích tam giác ABC nằm ngoài đường tròn O
Cho tam giác ABC có AB = 5cm, AC = 12cm, BC = 13cm.
a,Chứng minh tam giác ABC⊥ tại A và tính số đo góc B và C
b, Kẻ đường cao AH . Tính độ dài đường cao AH
c.kẻ HE⊥AB tại E ,HF ⊥ AC tại F Chứng minh AE.AB = AF.AC.
. Cho ABC vuông tại A; đường cao AH. Biết AC = 4cm, BC = 5cm.
a/ Giải tam giác vuông ABC. ( số đo góc làm tròn đến độ)
b/ Tính AH
c/ Gọi I ,K lần lượt là hình chiếu của H trên AB và AC. Chứng minh: AI.AB = AK.AC
Cho tam giác nhọn ABC nội tiếp trong đường tròn (O), AB < AC. Kẻ đường cao AH của tam giác. H thuộc BC và đường kính AD của đường tròn (O).
1. Chứng minh rằng tam giác BAH đồng dạng tam giác DAC.
2. Kẻ BK vuông góc AD, K thuộc AD. Chứng minh rằng tứ giác ABHK nội tiếp.
3. Chứng minh rằng đường thẳng HK vuông góc AC.