Bài 7. Cho tam giác ABC và H là trực tâm. Gọi M, N, P lần lượt là trung điểm của
các cạnh AB, BC và CA; D, E, F lần lượt là trung điểm các đoạn HA, HB và HC.
Chứng minh rằng các tứ giác MNFD và MEFP là các hình chữ nhật.
Bài 5: Cho tam giác ABC và H là trực tâm. Gọi M, N, P lần lượt là trung điểm của cạnh AB, BC, CA; D, E, F lần lượt là trung điêm của các đoạn HA, HB, HC
a) Chứng minh các tứ giác MNFD và MEFP là các hình chữ nhật
b) Để các đoạn MD, ME, DP bằng nhau thì tam giác ABC phải là tam giác gì?
Bài 5: Cho tam giác ABC và H là trực tâm. Gọi M, N, P lần lượt là trung điểm của cạnh AB, BC, CA; D, E, F lần lượt là trung điêm của các đoạn HA, HB, HC
a) Chứng minh các tứ giác MNFD và MEFP là các hình chữ nhật
b) Để các đoạn MD, ME, DP bằng nhau thì tam giác ABC phải là tam giác gì?
cho tam giác ABC nhọn gọi D E F lần lượt là trung điểm của AC AB BC.
a tứ giác BCDF là hình gì
b tứ giác BEDF là hình gì
c gọi H là trực tâm tam giac ABC và M N P lần lượt là trung điểm HB HC HA
ch/minh DEMN là hình chữ nhật
d gọi O la giao điểm của MD và EN
ch/minh 3 điểm O P E thẳng hàng
cho tam giác ABC có AB<AC đường cao AH .gọi 3 điểm D,E,F lần lượt là trung điểm của AB,AC,BC
a, tứ giác BDEF là hình gì?
b, CM tứ giác DEFK là hình thang cân
c, Gọi H là trực tâm của tam giác ABC. M,N,P theo thứ tự là trung điểm của HA,HB,HC .CM các đoạn thẳng MF,NE,PD bằng nhau và cắt nhau tại trung điểm của mỗi đường
cho tam giác ABC các góc đều nhọn. H là trực tâm và M, N, P làn lượt là trung điểm AB, BC và AC. Gọi I, J, K lần lượt là trung điểm HA, HB, HC.
a) Cm MPKJ hình chữ nhật.
b) Tìm đk của tam giác ABC để MI=IP=MJ
Cho ∆ABC nhọn. Gọi D, E, F lần lượt là trung điểm của các cạnh AC, AB, BC.
a) Tứ giác BEDF là hình gì ? Vì sao ?
b) Gọi H là trực tâm của ∆ABC. Gọi M, N, P lần lượt là trung điểm của HB, HC, HẠ. Chứng minh rằng tứ giác DEMN là hình chữ nhật.
c) Gọi O là giao điểm của MD và EN . Chứng minh rằng ba điểm O, P, F thẳng hàng.
Bài 1: Cho∆ABC nhọn, H là trực tâm của tam giác. Gọi M, N, P lần lượt là trung điểm của AB, BC, CA; R, S, T lần lượt là trung điểm của HA, HB, HC. CMR: RN=MT=SP.
Bài 2: Gọi O là giao điểm các đường chéo của hình thoi ABCD, E và F theo thứ tự là hình chiếu của O trên BC và CD. Tính các góc của hình thoi biết rằng EF=1/4 các đường chéo của hình thoi.
cho tam giác ABC có AB <AC đường cao AH. gọi 3 điểm D,E,F lần lượt là trung điểm của AB,AC,BC
a, tứ giác BDEF là hình gì?
b, cm tứ giác DEFK là hình thang cân
c, gọi H là trực tâm của tam giác ABC; M,N,P theo thứ tự là trung điểm của HA,HB,HC. CM các đường thẳng MF ,NE ,PD bằng nhau và cắt nhau tại trung điểm của mỗi đường