Kẻ đường cao C'H' và CH
Ta có: \(S_{\Delta ABC}=\frac{1}{2}AB.CH\)
\(S_{\Delta AB'C'}=\frac{1}{2}AB'.C'H'\)
Nên \(\frac{S_{\Delta ABC}}{S_{\Delta AB'C'}}=\frac{\frac{1}{2}AB.CH}{\frac{1}{2}AB'.C'H'}=\frac{AB}{AB'}.\frac{CH}{C'H'}\) (1)
Ta có: \(\hept{\begin{cases}C'H'\perp AB\\CH\perp AB\end{cases}}\Rightarrow C'H'//CH\)
\(\Rightarrow\frac{CH}{C'H'}=\frac{AC}{AC'}\) (2)
Từ (1) và (2) ta được: \(\frac{S_{\Delta ABC}}{S_{\Delta AB'C'}}=\frac{AB}{AB'}.\frac{AC}{AC'}=\frac{AB.AC}{AB'.AC'}\)
=> đpcm