Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R, đường kính BC với AB < AC
a) tính góc BAC
b) Vẽ đường tròn tâm I, đường kính AO cắt AB, AC lần lượt tại H và K. Chứng minh H, I, K thẳng hàng
c) Tia OH, OK cắt tiếp tuyến tại A với đường tròn tâm O lần lượt tại D, E. Chứng minh BD + CE = DE
d) Chứng tỏ đường tròn đi qua 3 điểm D, O, E tiếp xúc với BC
Cho tam giác ABC nội tiếp đường tròn (O) đường kính BC với AB< AC
a. Tính góc BAC.
b.Vẽ đường tròn (I) đường kính AO cắt AB,AC lần lượt tại H,K. Chứng minh: Ba điểm H,I,K thẳng hàng.
c) Tia OH,OK cắt tiếp tuyến A với (O) lần lượt tại D,E. Chứng minh: BD+CE=DE.
Cho tam giác ABC nội tiếp đường tròn tâm O và AB<AC . Vẽ AH vuông góc với BC tại H . đường tròn đường kính AH lần lượt cắt AB ,AC tại I và K . Chứng minh ba đường thẳng AD , IK và BC đông qui
giúp em vs
Cho tam giác ABC nội tiếp đường tròn (O;R) đường kính BC với AB<AC
a, tính góc BAC
b,vẽ đường tròn (I) đường kính OA cắt AB , AC lần lượt tại H,K .Chứng minh ba điểm H,I,K thẳng hàng
c, Tia OH, OK cắt tiếp tuyến tại A với (O) lần lượt tại D,E . Chứng minh BD+CE=DE
d,Chứng minh : đường tròn đó qua ba điểm D,O,E tiếp xúc với BC
Bài 7: Cho tam giác ABC nội tiếp đường tròn (O) đường kính BC với AB< AC
a. Tính góc BAC.
b.Vẽ đường tròn (I) đường kính AO cắt AB,AC lần lượt tại H,K. Chứng minh: Ba điểm H,I,K thẳng hàng. c) Tia OH,OK cắt tiếp tuyến A với (O) lần lượt tại D,E. Chứng minh: BD+CE=DE.
d.Chứng minh đường tròn đi qua ba điểm D,O,E tiếp xúc với BC
Cho tam giác ABC có ba góc nhọn (AB<AC). Đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại M, N, BN cắt CM tại H.
a) Chứng minh AMHN nội tiếp, xác định tâm (I).
b) Đường tròn ngoại tiếp OCN cắt AO tại E. Chứng minh E thuộc đường tròn (I).
c) BC cắt AH tại D, cắt MN tại S. Chứng minh SM.SN=SD.SO
d) Chứng minh S, H, E thẳng hàng.
Cho tam giác ABC có ba góc nhọn ( AB bé hơn AC ) nội tiếp trong đường tròn tâm O. Hai đường cao BE và CF của tam giác ABC cắt nhau tại H.
a) chứng minh các tứ giác AEHF, BFEC nội tiếp được đường tròn
b) tia AH cắt BC tại D, kẻ đường kính AK của đường tròn tâm O. Chứng ming AB.AC= AD.2R
c) đường thẳng EF cắt đường tròn tâm O tại hai điểm M và N ( M thuộc cung nhỏ AB ). Chứng minh AM = AN
d) vẽ đường tròn tâm i đường kính AH cắt đường tròn tâm O tại S ( S khác A ), đường thẳng SA và BC cắt nhau tại T. Chứng minh ba điểm T, M, N thẳng hàng
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!
Bài 1:
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.
Bài 2:
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD