Bài IV. (3,0 điểm) Cho tam giác nhọn ABC (AB< AC) nội tiếp đường tròn (O), các đường cao AD,BE cắt nhau tại H, F là chân đường vuông góc hạ từ B lên tiếp tuyến tại A của (O). Gọi K là trực tâm của tam giác BEF, đường thẳng CK cắt AF tại điểm M.
1) Chứng minh các điểm A, F, B, D, E cùng nằm trên một đường tròn .
2) Chứng minh AMACAMAC=AFECAFEC và ABF=CBE
3) Gọi N là chân đường cao hạ từ A lên BM . Chứng minh: BA là phân giác của MBC và N,K,E thẳng hàng.
Bài IV. (3,0 điểm) Cho tam giác nhọn ABC (AB< AC) nội tiếp đường tròn (O), các đường cao AD,BE cắt nhau tại H, F là chân đường vuông góc hạ từ B lên tiếp tuyến tại A của (O). Gọi K là trực tâm của tam giác BEF, đường thẳng CK cắt AF tại điểm M.
1) Chứng minh các điểm A, F, B, D, E cùng nằm trên một đường tròn .
2) Chứng minh \(\dfrac{AM}{AC}\)=\(\dfrac{AF}{EC}\) và ABF=CBE
3) Gọi N là chân đường cao hạ từ A lên BM . Chứng minh: BA là phân giác của MBC và N,K,E thẳng hàng.
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao AD,
BE, CF cắt nhau tại H.
a) Chứng minh tứ giác AEHF nội tiếp. b) Chứng minh BH . EC = BC. DH
c) Gọi M là trung điểm của BC. Tiếp tuyến của đường tròn tại B cắt OM tại P.
Chứng minh rằng DAP MAO =
cho tam giác ABC nhọn AB<AC nội tiếp đường tròn tâm O. BD và CE là đường cao cắt nhau tại H . K là giao điểm của CB và ED .
a) B,E,C,D thuộc đường tròn tâm M
b) cm KB.KC=KE.KD
Cho tam giác ABC nội tiếp đường tròn (O) . Hai đường cao BD,CE cắt nhau tại H Và cắt đường tròn lần lượt ở M và N.
Cm: a, Tam giác AMN cân.
b, H và M đối xứng M qua AC và H đối xứng N qua AB.
c, OA vuông góc với DE
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.
Cho tứ giác ABCD nội tiếp đường tròn tâm O đường kính AD hai đường chéo AC và BD cắt nhau tại I kẻ IE vuông góc với ad A : CM DC ie nội tiếp B: ca là tia phân giác của góc bce C: gọi K là tâm của đường tròn ngoại tiếp tam giác CIE,CM : kbd thẳng hàng
Từ điểm A nằm bên ngoài đường tròn (O ) vẽ hai tiếp tuyến AB, AC lần lượt tại B, C của (O ) .
1) Chứng minh tứ giác ABOC nội tiếp đường tròn.
2) Vẽ hai đường kính BD, CE của (O ) , gọi I là giao điểm của AO và BC, gọi F là giao điểm của đường thẳng DI và (O ) , với F khác D. Chứng minh ba điểm A, E, F thẳng hàng.
giúp vs ạ!!!
Cho ΔABC vuông tại A (AB < AC) nội tiếp đường tròn (I;r). Gọi P là trung điểm của AC, AH là đường cao của ΔABC.
a, C/m: Tứ giác APIH nội tiếp được trong đường tròn (K). Xác định tâm K của đường tròn này.
b, C/m: 2 đường tròn (I) và (K) tiếp xúc nhau.