Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhoc Ti Dang Yeu

Cho tam giác ABC nhọn, trực tâm H, M là trung điểm của BC. Qua H kẻ đương thẳng vuông góc với HM cắt AB, AC lần lượt tại E, F.
a, Trên tia đối tia HC, lấy D sao cho HC=HD. Chứng minh E là trực tâm tam giác BDC.
b, Chứng minh HE=HF

Nguyễn Tất Đạt
3 tháng 9 2017 lúc 15:58

A B C D F M H E

a) Đề sai nha bạn (Phải là cm E là trực tâm của \(\Delta\)BHD)

Xét \(\Delta\)BDC: M là trung điểm của BC, HC=HD => H là trung điểm của CD.

=> HM là đường trung bình của \(\Delta\)BDC => HM//BD.

Mà HM vuông góc với EF => BD cũng vuông góc với EF (Quan hệ song song vuông góc)

Xét \(\Delta\)BHD: BE vuông góc với DH; HE vuông góc với BD ( EF vuông góc BD cmt)

=> E là trực tâm của \(\Delta\)BHD (đpcm)

b) Nối D với E.

Ta có E là trực tâm \(\Delta\)BHD (cmt) => DE vuông góc BH

Mà AC vuông góc BH => DE//AC (Quan hệ song song vuông góc) hay DE//CF

=> ^EDH=^FCH (Cặp góc So le trong)

Xét \(\Delta\)DEH và \(\Delta\)CFH: 

^DHE=^CHF (Đối đỉnh)

HD=HC                                     \(\Rightarrow\)\(\Delta\)DEH=\(\Delta\)CFH  (g.c.g)

^EDH=^FCH

\(\Rightarrow\)HE=HF (2 cạnh tương ứng) => Đpcm.

Emma
2 tháng 4 2021 lúc 18:59

Gọi giao điểm HM với DC là P; giao điểm HN với BC là E 
a) Vì HP vuông góc với IK, mà IK//CD nên DC vuông góc với HP 
=> HP và CE là các đường cao của ▲HCN cắt nhau ở M 
=> M là trực tâm ▲HCN , nên NM là đường cao thứ 3 hay NM vuông góc với HC 
Lại có HC vuông góc với AB (CH là đường cao) 
=> NM//AB 
Xét ▲BDC có M là trung điểm BC và NM//BD nên ND = NC 
b) Do IK//CD nên theo Talet: IH/DN = IK/NC (= AI/AN) 
=> IH/IK = ND/NC = 1 (Vì ND = NC). Vậy IH = HK

Khách vãng lai đã xóa
︵✿мσи¢ôĐơи‿✿
31 tháng 10 2021 lúc 17:18

...


Các câu hỏi tương tự
Xuân Trà
Xem chi tiết
Cao Thanh Nga
Xem chi tiết
Nguyễn Anh Hào
Xem chi tiết
an lê duy
Xem chi tiết
Ayakashi
Xem chi tiết
Trương Quỳnh Trang
Xem chi tiết
Nguyễn Lê Dung
Xem chi tiết
Đỗ Lê Mỹ Hạnh
Xem chi tiết
nguyen my chi
Xem chi tiết