Akai Haruma DƯƠNG PHAN KHÁNH DƯƠNG Nguyễn Việt Lâm
Akai Haruma DƯƠNG PHAN KHÁNH DƯƠNG Nguyễn Việt Lâm
Cho tam giác ABC và điểm K thuộc cạnh BC sao cho KB=2KC, L là hình chiếu của B trên AK, F là trung điểm của BC, biết rằng KAB=2KAC. Chứng minh rằng FL vuông góc với AC.
Bài 1: Cho tam giác ABC có AB = 2cm, BC= 4 cm, CA = 3 cm
Tính \(\overrightarrow{AB}.\overrightarrow{AC}\)
Bài 2: Cho tam giác ABC có A ( 1; -1), B ( 5,-3), C ( 2,0)
a) Chứng minh rằng : A,B,C là 3 đỉnh của tam giác
Tính chu vi và diện tích của tam giác
b) Tìm tọa độ M biết \(\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}\)
c) Tìm tâm bán kính đường tròn ngoại tiếp tam giác ABC
Cho tam giác ABC, điểm D nằm trên cạnh AC, điểm E nằm trên cạnh BC sao cho : AD=DC ; BE = 3/2 EC. Các đoạn thẳng AE và BD cắt nhau ở K. a) BK gấp mấy lần KD ????????? b) Biết S ∆ ABC bằng 80 m². Tính S hình DKEC.
Cho tam giác ABC cân tại A trên tia đối của tia BC lấy điểm M trên tia đối của tia BC lấy điểm N sao cho BM=CN
A)chung minh tam giác AMN là tam giác cân
B) kẻ BH vuông góc với AM (H thuộc AM ) CK vuông góc AN (K thuộc AN )chung minh BH bằng CK
C gọi O là giao điểm của BH và CK chung minh tam giac OBC cân
D gọi D là trung điểm của BC chứngminh ADI thẳng hàng
Các bạn vẻ hình và làm giúp minh nhé
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với và . a) Tính tọa độ điểm G và vectơ ( với điểm G là trọng tâm tam giác ABC ). b) Gọi I là trung điểm của BC. Tìm tọa độ điểm D sao cho tứ giác ABID là hình bình hành.
Cho tam giác ABC cân tại đỉnh A. Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD= CE. Gọi I là trung điểm của DE. Chứng minh ba điểm B, I, C thẳng hàng.
Tam giác ABC có AB=AC gọi MN lần lượt là trung điểm của AB AC M thuộc AB và N thuộc AC
Chứng minh
A tam giác AMC= tamgiác ANB
B góc ACM= góc ABN
Các bạn đừng làm gì liên quan đến tam hiacs cân nhé
Cho tam giác ABC vuông tại A, đường cao AH. Trên tia BC lấy điểm D sao
choBD BA . Đường vuông góc với BC tại D cắt AC tại E. Chứng minh rằng:
a) Điểm H nằm giữa B; D.
Page 15
b) BE là đường trung trực của đoạn AD.
c) Tia AD là tia phân giác của góc HAC.
d) HD DC
Trong mặt phẳng Oxy cho tam giác ABC có C(4,-1) trung điểm của đoạn AB là M (3,2) đường cao AH của tam giác ABC có phương trình x+3y-7=0 viết phương trình chứa cạnh AC