cho tam giác ABC có hai đường trung tuyến AD và CE trên tia đối của tia BA lấy điểm K sao cho BK = BE trên tia đối của tia BC lấy điểm H sao cho CH = CD gọi M là giao điểm của AC và EH . Chứng minh M là trung điểm của EH và K ,D , M thẳng hàng
Cho tam giác ABC có D.E lần lượt là trung điểm của BC và AB.Trên tia đối của tia CB, lấy điểm H sao cho CH=CD.Gọi M là giao điểm của AC và EH.
a)Chứng minh:M là trung điểm của EH
b) Trên tia đối của tia BA , lấy K sao cho BK=BE.Chứng minh: K,D,M thẳng hàng
Cho tam giác ABC, trung tuyến AD và CE.Trên tia đối BA lấy K sao cho BK=BE. Trên tia đối CB lấy H sao cho CH=CD.AC cắt EH tại M.
CMR: M là trung điểm EH và K,D,M thẳng hàng
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
1. Cho tam giác ABC có M là trung điểm của AC trên tia đối của tia BA lấy điểm D sao cho AB = BD gọi E là giao điểm của DM với BC.
a) so sánh DE và EC ; ME và DM
b) Gọi N là trung điểm của DC chứng minh 3 điểm A,E,N thẳng hàng.
2. Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD=AB. Trên cạnh AC lấy điểm E sao cho AE=1/3AC. Tia BE cắt CD tại M. Chứng minh M là trung điểm của CD
* Kẻ hình hộ mình vs
* mình đang cần gấp nha
Cho ∆ABC có BC=8cm, các đường trung tuyến BD, CE. Gọi M, N lần lượt là trung điểm của BE,CD. Gọi giao điểm của MN với BD,CE lần lượt là I, K.
a) Tính độ dài MN
b) Chứng min MI=IK=KN.
Cho ∆ABC cân tại A, M là trung điểm của BC. Trên tia đối của AB lấy điểm E, trên tia đối của AC lấy điểm D, sao cho AE=AD. Chứng minh D và E đổi xứng với nhau qua đường thẳng AM
cho tam giác abc có trung tuyến AM trên AB lấy E, trên AC lấy F sao cho AE/EB = AF/FC gọi N là giao điểm AM và EF
a) C/m N là trung điểm EF
b) NB kéo dài cắt AC tại Q, NC kéo dài cắt AB tại P. C/m PQ song song BC
c) trên tia đối của EF lấy H sao cho F là trung điểm EH trên tia đối của CB lấy điểm K sao cho C là trung điểm BK. C/m A,H,K thẳng hàng.
d) c/m EK,BH,AC đồng quy
cho tam giác ABCcó AB=AC. M là trung điểm BC : a) chứng minh: tam giác ABMvà am = BC: trên tia đối của MA, chứng minh, DC=AB và DC//AB: gọi N la trung điểm AC trên tia BN lấy điểm K sao cho N là trung điểm của BK, chứng minh ba điểm D,C,K, thẳng hàng.
Bài 1
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song
với DE
b) Tính HK, biết chu vi tam giác ABC bằng 10 cm
Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB
Bài 3 Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH, E là giao điểm của BI và AC. Tính các độ dài AE và EC, biết AH = 12 cm, BC = 18 cm