AB=AC=>tam giác ABC cân tại A(Định nghĩa tam giác cân)
=>góc B= góc C(tính chất tam giác cân)
AB=AC=>tam giác ABC cân tại A(Định nghĩa tam giác cân)
=>góc B= góc C(tính chất tam giác cân)
1. cho tam giác ABC có góc B = góc C. CMR AB=AC.
2. cho tam giác ABC có AB=AC. CMR góc B = góc C
cho tam giác ABC có AB=AC. Tia phân giác của góc A cắt BC tại D
a) C/m: tam giác ADB= tam giác ADC
b) Kẻ DH vuông góc với AB ( H thuộc AB), DK vuông góc với AC(k thuộc AC). C/m DH=DK
c) biết góc A = 4 góc B. tính số đo các góc của tam giác ABC.
Cho tam giác ABC có AB = AC. AM vuông góc với BC tại M. Chứng minh
a) AM là tia phân giác góc BAC.
b) M là trung điểm của BC.
c) AM là đường trung trực của BC.
d) Góc B = góc C.
Bài 5: Cho tam giác ABC có góc B = góc C. Chứng minh AB = AC
cho tam giác abc có góc a = 60 độ góc c < góc B < 90 độ
a, cm ab<ac
b cm trên cạnh ac lấy điểm m sao cho am = ab .Chứng minh tam giác abm là tam giác đều
c, so sánh các cạnh của tam giác abc
Cho tam giác ABC có góc B = góc C tia phân giác trong góc A cắt BC tại M vẽ MH vuông góc với AB (H thuộc AB ) MK vuông góc AC ( K thuộc AC ) chứng minh: a) tam giác AMB = tam giác AMC b) MH = MK
1) Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt BC ở D. Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ABD = tam giác AED
b) C/m AD vuông góc với BE
c) Chứng minh góc ADB < góc ADC
2) Cho tam giác ABC có AB<AC, AD là tia phân giác của góc BAC ( D thuộc BC ). Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ADB = tam giác ADE
b) Gọi F là giao điểm của tia AB và tia ED. Chứng minh tam giác BFD = tam giác ECD
c) So sánh DB và DC
Cho tam giác ABC, có góc B = góc C. Tia phân giác của góc A cắt BC tại M. C/m
a) tam giác AMB = tam giác AMC
b) AB = AC
Cho tam giác ABC có góc B bằng góc C, tia phân giác BD và CE của góc B và góc C cắt nhau tại O. Kẻ OH vuông góc với AC,OK vuông góc AB chứng minh a. Tam giác BCD = tam giác vuông góc với OK; OK vuông góc với AB. Chứng c CBE b. C/m: OB=OC c.C/m: OH=OK
cho tam giác ABC có AB = AC , kẻ AM vuông góc BC (M thuộc BC) a, CMR : tam giác AMB = tam giác AMC b, CMR : B = C và AM là phân giác của góc BAC c, kẻ MH , MK lần lượt vông góc với AB , AC . CMR : AH = AK