c) Vì \(\Delta ABH\sim\Delta AHD\Rightarrow AC^2=AB.AD\)
\(\Delta ACH\sim\Delta AHE\Rightarrow AC^2=AC.AE\)
Do đó \(AB.AD=AC.AE\Rightarrow\frac{AB}{AC}=\frac{AE}{AD}\)
Xét \(\Delta ABE\) và \(\Delta ACD\) có :
\(\frac{AB}{AC}=\frac{AE}{AD};\widehat{BAC}:chung\)
\(\Rightarrow\) \(\Delta ABE\sim\Delta ACD\)
\(\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Xét \(\Delta BDM\) và \(\Delta ECM\) có:
\(\widehat{ABE}=\widehat{ACD};\widehat{DMB}=\widehat{CME}\)
=> \(\Delta BDM\) ~ \(\Delta ECM\)