Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
cu llor con

Cho tam giác ABC cân tại A(A<90độ),kẻ CE⊥AB(E thuộc AB),BD⊥AC(d thuộc AC).
a) chứng minh BE=CD
b) Gọi I là giao điểm của BD và CE.chứng minh AI là tia phân giác của góc BAC.
c) Gọi M là trung điểm của BC, chứng minh ba điểm A,I,M thảng hàng.

Nguyễn Lê Phước Thịnh
15 tháng 5 2023 lúc 19:03

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

góc EBC=góc DCB

=>ΔEBC=ΔDCB

=>BE=DC

=>AE=AD

b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

=>ΔAEI=ΔADI

=>góc EAI=góc DAI

=>AI là phân giác của góc BAC

c: ΔABC cân tại A

mà AM là trung tuyến

nên AM là phân giác của góc BAC

=>A,I,M thẳng hàng

『Kuroba ム Tsuki Ryoo...
15 tháng 5 2023 lúc 19:40

`a,`

Vì `\Delta ABC` cân tại A

`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$

Xét `2\Delta` vuông và `BEC` và `CDB`:

`\text {BC chung}`

$\widehat {B} = \widehat {C}$

`=> \Delta BEC = \Delta CDB (ch-gn)`

`-> \text {BE = CD (2 cạnh tương ứng)}`

`b,`

Ta có: \(\left\{{}\begin{matrix}\text{AB = AE + BE}\\\text{AC = AD + CD}\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{BE = CD}\end{matrix}\right.\)

`-> \text {AE = AD}`

Xét `2\Delta` vuông `AEI` và ` ADI`:

`\text {AE = AD}`

`\text {AI chung}`

`=> \Delta AEI = \Delta ADI (ch-cgv)`

`->` $\widehat {EAI} = \widehat {DAI} (\text {2 góc tương ứng})$

`-> \text {AI là tia phân giác của}` $\widehat {EAD}$

Mà \(\text{E}\in\text{AB, D}\in\text{AC}\)

`-> \text {AI là tia phân giác của}` $\widehat {BAC}$ `(1)`

`c,`

Vì M là trung điểm của AC

`-> \text {AM là đường trung tuyến của} \Delta ABC` `(2)`

Từ `(1)` và `(2)`

`-> \text {Ba điểm A, I, M thẳng hàng.}`

loading...


Các câu hỏi tương tự
Sett
Xem chi tiết
Vonguyenphuongloan
Xem chi tiết
phạm bá quân
Xem chi tiết
21. Ngọc Như 6/2 Mai
Xem chi tiết
Nguyen_Thi_Anh_Tuyet
Xem chi tiết
//////
Xem chi tiết
Hồ Nhật Anh
Xem chi tiết
Tomori Nao
Xem chi tiết
Mon an
Xem chi tiết