Cho tam giác ABC nhọn (AB < AC) nội tiếp (O; R), các đường cao BD, CE cắt nhau tạiH. AH cắt BC, DE lần lượt tại F và K.
a) Chứng minh rằng tứ giác ADHE nội tiếp đường tròn, xác định tâm I của đường tròn này.
b) Vẽ tia Cx là tiếp tuyến của (O) (tia Cx nằm trên nửa mặt phẳng bờ BC không chứa điểmA). Chứng minh rằng tứ giác ADFB nội tiếp đường tròn và Cx // DF.
c) Chứng minh rằng DH là tia phân giác của góc EDF và AF.HK = AK.HF.
d) Chứng minh tam giác FBK đồng dạng tam giác FIC rồi suy ra K là trực tâm tam giác BIC
*Sửa giúp em câu c & d ạ
Cho đường tròn tâm O đường kính AB. Từ A và B vẽ hai dây cung AC và BD của đường tròn (O) cắt nhau tại N bên trong đường tròn (C,D nằm trên cùng nửa mặt phẳng bờ AB). Hai tiếp tuyến Cx, Dy của đường tròn (O) cắt nhau tại M. Gọi P là giao điểm của hai đường thẳng AD và BC
1. Chứng minh tứ giác DNCP nội tiếp đường tròn
2. Chứng minh ba điểm P, M, N thẳng hàng
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O,R). Các đường cao AD,BE, CF cắt nhau tại H.
Vẽ tia Ax là tia tiếp tuyến của đường tròn O, tia Ax nằm trên nửa mặt phẳng bờ AB có chứa điểm C.
Chứng minh rằng : Ax // EF. Từ đó suy ra OA ⊥ EF
Giải giùm mình câu này nha.
Cho nửa đường tròn (O) đường kính AB, trên nửa mặt phẳng bờ AB chứa nửa đường tròn đó, kẻ hai tia tiếp tuyến Ax, By với (O). Gọi (I) là đường tròn tiếp xúc với Ax tại C và tiếp xúc ngoài với nửa đường tròn (O) tại F. Kẻ tiếp tuyến CE với (O) (E là tiếp điểm, E khác A), AE cắt tia By tại D. Cho AB = 2R.
a) Tính AC.BD theo R. Chứng minh CE^2 = CF.CB.
b) Đường thẳng vuông góc với By tại D cắt OE tại J, CE cắt DF tại G. Chứng minh:
- DF là tiếp tuyến của (O).
- G là tâm của đường tròn nội tiếp tam giác OIJ
Cho tam giác ABC vuông tại A. Vẽ đường tròn (O) đường kính AB cắt BC tại H
a) Chứng minh AC là tiếp tuyến của (O) và BH.BC = 4OB^2
b Gọi D là điểm chính giữa cung AH, tiếp tuyến tại H với đường tròn (O) cắt AC tại M . chứng minh BD là phân giác của góc ABC và 3 điểm O,D,M thẳng hàng
c) CHứng minh tứ giác OAHM nội tiếp và góc CMH = 2.HOM
d) Tia BD cắt AC tại E, gọi I là tâm đường tròn ngoại tiếp tam giác CDE. chứng minh IO vuông góc với HD
e) Từ C vẽ tiếp tuyến Cx với đường tròn (O) , từ O vẽ tia Oy vuông góc với OC. Gọi K là giao điểm của Cx và Oy. CHứng minh BK là tiếp tuyến của (O)
làm ơn giúp mình giải bài toán này mình đang cần gấp để nộp mình xin cảm ơn nhiều
Cho nửa đường tròn (O) đường kính AB, trên nửa mặt phẳng bờ AB chứa nửa đường tròn đó, kẻ hai tia tiếp tuyến Ax, By với (O). Gọi (I) là đường tròn tiếp xúc với Ax tại C và tiếp xúc ngoài với nửa đường tròn (O) tại F. Kẻ tiếp tuyến CE với (O), (E là tiếp điểm, E khác A), AE cắt tia By tại D. Cho AB = 2R.
a). Tính AC.BD theo R. Chứng minh : CE2 = CF.CB.
b). Đường thẳng vuông góc với By tại D cắt OE tại J, CE cắt DF tại G.Chứng minh:
- DF là tiếp tuyến của (O).
- G là tâm của đường tròn nội tiếp tam giác OIJ.
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!
Bài 1:
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.
Bài 2:
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD
Cho tam giác ABC nhọn ( AB < AC ) nội tiếp ( O ). Tiếp tuyến tại A cắt BC tại S. I là trung điểm của BC. Tia OI cắt ( O ) tại D. AD cắt BC tại E. Vẽ đường kính DF của (O). SF cắt (O) tại M. CM : SE là tiếp tuyến của đường tròn ngoại tiếp tam giác MEF.