rất dễ thôi
|vecto AK + vecto AM| = |vecto AN| = AN ( qui tắc hình bình hành )
áp dụng định lý Pitago trong tam giác MNA ta đc: AN = 2,5
vậy...............
rất dễ thôi
|vecto AK + vecto AM| = |vecto AN| = AN ( qui tắc hình bình hành )
áp dụng định lý Pitago trong tam giác MNA ta đc: AN = 2,5
vậy...............
Cho tam giác ABC cân tại A và điểm M bất kì nằm trong tam giác. Qua M kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại D,E. Dựng MK vuông góc với BC tại K gọi I là trung điểm BC. CMR: \(2\overrightarrow{MK}+\overrightarrow{MD}+\overrightarrow{ME}=2\overrightarrow{MI}\)
Cho tứ giác ABCD, Gọi I,J,K lần lượt là trung điểm các cạnh AD,BC,CD và G là trung điểm của IJ c/m
a) AB-CD=2IJ
b) GA+GB+GC+GD=0
c)AB+AC+AD=4AG
d) 2(AB+AJ+KA+DA) = 3DB
Cho tam giác ABC, gọi M, N lần lượt là các điểm thuộc cạnh AB, AC sao cho AM = 1/2 MB; AN = 3NC, K là trung điểm MN. Biểu thị \(\overrightarrow{AK}=m.\overrightarrow{AB}+n.\overrightarrow{AC}\), tích m.n = ...
Cho ta giác ABC có M là trung điểm của AB và D,N lần lượt là các điểm trên BC,AC sao cho: \(\overrightarrow{BD}=\sqrt{2}\cdot\overrightarrow{DC}\) , \(\overrightarrow{AN}=\frac{1}{\sqrt{3}}\overrightarrow{AC}\) . Gọi K là điểm thuộc MN thỏa mãn: \(\overrightarrow{MK}=a\cdot\overrightarrow{NK}\) . Tìm a để A,D,K thẳng hàng.
a) Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn: \(\overrightarrow{BD}=\dfrac{2}{3}\overrightarrow{BC};\overrightarrow{AE}=\dfrac{1}{4}\overrightarrow{AC}.\)Tìm vị trí của điểm K trên AD sao cho 3 điểm B, K, E thằng hàng.
b) Cho tam giác ABC vuông tại A; BC = a; CA = b; AB = c. Xác định điểm I thỏa mãn hệ thức: \(\left(b^2MB^2+c^2MC^2-2a^2MA^2\right)\) đạt giá trị lớn nhất.
Cho tam giác ABC , gọi M, N lần lượt là trung điểm AB, AC . Trên đường thẳng MN, BC lần lượt lấy điểm E, F sao cho \(\overrightarrow{ME}=-\frac{1}{2}\overrightarrow{NE},\overrightarrow{BF}=\frac{1}{3}\overrightarrow{BC}\) chứng minh 3 đểm A,E,F thẳng hàng
Cho tam giác ABC vuông tại A biết AB=a ;AC=\(a\sqrt{3}\) ;M nằm trên đoạn AC sao cho \(\overrightarrow{AC}=3\overrightarrow{AM}\) và N là trung điểm của BC.
1)Chứng minh rằng \(\overrightarrow{MN}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}\) .Từ đó suy ra MN vuông góc với BC
2)Gọi G là trọng tâm tam giác BMN,K nằm trên đoạn AB sao cho \(BK=\frac{4}{13}AB\) .Chứng minh rằng C;G;K thẳng hàng
Cho tam giác ABC vuông tại A, AB=3, AC=4. Gọi M là trung điểm của AB, N là điểm trên cạnh BC sao cho BN=2 NC và P là điểm thuộc đường thẳng AC sao cho BP ⊥MN. Tính tỉ số \(\frac{AP}{AC}\)
Cho ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm của BC, AD. Chứng mình rằng
a) vectoAB + 2vectoAC + AD = 3vectoAC
b) vectoAM + vectoAN = vectoAB + vectoAD
c) vectoOA + vectoOB + vecoOC + vectoOD = vecto-không
d) vectoMA + vectoMB + vectoMC + vectoMD = 4vectoMO với M là điểm bất kì