a.
\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0;\forall m\)
\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=2m-4\end{matrix}\right.\)
c.
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow m^2-2\left(2m-4\right)=4\)
\(\Leftrightarrow m^2-4m+4=0\Rightarrow m=2\)
a.\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0\)
=> pt luôn có nghiệm với mọi m
b.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=2m-4\end{matrix}\right.\)
c.\(x_1^2+x_2^2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=4\)
\(\Leftrightarrow\left(-m\right)^2-2\left(2m-4\right)=4\)
\(\Leftrightarrow m^2-4m+8-4=0\)
\(\Leftrightarrow m^2-4m+4=0\)
\(\Leftrightarrow\left(m-2\right)^2=0\)
\(\Leftrightarrow m=2\)