A =\(\dfrac{n+2}{n+1}\) với n \(\ne\) 3
a, tìm n để A là số nguyên
b, chứng minh A là phân số tối giản
Cho phân số A = n-5 trên n+1 (n thộc Z, n khác -1)
a, tìm n để A có giá trị là số nguyên
b, tìm n để A là phân số tối giản
Cho phân số \(A=\frac{n-5}{n+1}\) (n thuộc Z, n khác -1)
a, Tìm n để A có giá trị nguyên
b, Tìm n để A là phân số tối giản
1/a/ Cho biểu thức A =\(\frac{5}{n-1}\),(n \(\in\)z)
Tìm điều kiện của n để A là phân sô? Tìm tất cả giá trị nguyên của n để A là số nguyên?
b/ Chứng minh phân số \(\frac{n}{n+1}\)tối giản; ( n \(\in\)N và n \(\ne\)0 )
Cho phân số \(A=\frac{n+1}{n-3}\)(n thuộc Z)
a, Tìm n để A là phân số
b, Tìm n để A là phân số tối giản
c, Tìm n để A có giá trị lớn nhất
Cho phân số A=\(\frac{n+1}{n-3}\)( n thuộc Z)
a) Tìm n để A là phân số.
b) Tìm n để A là phân số tối giản.
c) Tìm n để A có giá trị lớn nhất.
cho phân số A= n-5/ n+1(n thuộc Z, n khác -1).
a) Tìm n để A có giá trị nguyên
b) Tìm n để A là phân số tối giản
A = n-5/n+1(với n thuộc z n khác -1)
a) Tìm n để A có giá trị là số nguyên
b)Tìm n để A là phân số tối giản
Cho ps A=n-5/n†1(n thuộc Z)
a)Tìm n để A có giá trị nguyên
b) tìm n để A là phân số tối giản