không mất tổng quát ta giả sử p<q
vì đây là hai số lẻ liên tiếp nên : \(q=p+2\)
do đố ta có : \(2p+2=2n\Leftrightarrow n=p+1\)
do p nguyên tố lẻ nên p+1 là số chẵn nên n là hợp số
không mất tổng quát ta giả sử p<q
vì đây là hai số lẻ liên tiếp nên : \(q=p+2\)
do đố ta có : \(2p+2=2n\Leftrightarrow n=p+1\)
do p nguyên tố lẻ nên p+1 là số chẵn nên n là hợp số
CHỨNG MINH RẰNG
A) Hai số tự nhiên liên tiếp ( khác 0 ) là hai số nguyên tố cùng nhau .
B) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau .
C) 2n + 1 và 3n + 1 ( n \(\in\)N ) là hai số nguyên tố cùng nhau .
LÀM NHANH MK CẦN GẤP
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
chứng minh rằng :
a, hai số tự nhiên liên tiếp ( khác 0 ) là hai số nguyên tố cùng nhau
b, hai số nguyên lẻ liên tiếp là hai số nguyên tố cùng nhau
c,2n + 1 và 3n + 1 (n thuộc N ) là hai số nguyên tố cùng nhau
Cho p>q là 2 số nguyên tố lẻ liên tiếp. Chứng minh rằng (p+q)2 là hợp số.
Cho p>q là 2 số nguyên tố lẻ liên tiếp. Chứng minh rằng (p+q)2 là hợp số.
Chứng minh rằng các số sau đây nguyên tố cùng nhau:
a) Hai số lẻ liên tiếp b) 2n + 5 và 3n + 7(n \(\in\)N)
Chứng minh 2n+5 và 6n+17 là hai số nguyên tố cùng nhau
Chứng minh 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Chứng minh n+3 và 3n+10 là hai số nguyên tố cùng nhau