Số nguyên tố lớn hơn có dạng 3k+1 và 3k+2
Xét p có dạng 3k+1
=> ( p - 1 ) ( p + 4 ) = ( 3k+1 - 1 ) ( 3k+1 + 4 )
= 3k( 3k+5 )
Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ
=> 3k+5 là số chẵn
=> 3k( 3k + 5 ) chia hết cho cả 3 và 2
=> 3k( 3k + 5 ) chia hết cho 6 kéo theo ( p-1 ) ( p+4) chia hết cho 6
Xét p có dạng 3k+2
=> ( p - 1 ) ( p + 4 ) = ( 3k + 2 - 1 ) ( 3k + 2 + 4 )
= ( 3k+1 ) ( 3k + 6 )
= ( 3k + 1 ) [ 3( k + 2 ) ]
Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ
=> 3k+1 là số chẵn
=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 2 và 3
=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 6 kéo theo ( p - 1 ) ( p + 4 ) chia hết cho 6
Vậy với mọi p ta có ( p - 1 ) ( p + 4 ) chia hết cho 6 )
P/s : đây là dạng toán chứng minh đơn giản nhất của khối 6
Số nguyên tố lớn hơn có dạng 3k+1 và 3k+2
Xét p có dạng 3k+1: ta có
=> ( p - 1 ) ( p + 4 ) = ( 3k+1 - 1 ) ( 3k+1 + 4 )
= 3k( 3k+5 )
Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ
=> 3k+5 là số chẵn
=> 3k( 3k + 5 ) chia hết cho cả 3 và 2
=> 3k( 3k + 5 ) chia hết cho 6 kéo theo ( p-1 ) ( p+4) chia hết cho 6
Xét p có dạng 3k+2
=> ( p - 1 ) ( p + 4 ) = ( 3k + 2 - 1 ) ( 3k + 2 + 4 )
= ( 3k+1 ) ( 3k + 6 )
= ( 3k + 1 ) [ 3( k + 2 ) ]
Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ
=> 3k+1 là số chẵn
=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 2 và 3
=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 6 kéo theo ( p - 1 ) ( p + 4 ) chia hết cho 6
Vậy với mọi p ta có ( p - 1 ) ( p + 4 ) chia hết cho 6
Bài làm
Số nguyên tố lớn hơn có dạng 3k+1 và 3k+2
Xét p có dạng 3k+1: ta có
=> ( p - 1 ) ( p + 4 ) = ( 3k+1 - 1 ) ( 3k+1 + 4 )
= 3k( 3k+5 )
Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ
=> 3k+5 là số chẵn
=> 3k( 3k + 5 ) chia hết cho cả 3 và 2
=> 3k( 3k + 5 ) chia hết cho 6 kéo theo ( p-1 ) ( p+4) chia hết cho 6
Xét p có dạng 3k+2
=> ( p - 1 ) ( p + 4 ) = ( 3k + 2 - 1 ) ( 3k + 2 + 4 )
= ( 3k+1 ) ( 3k + 6 )
= ( 3k + 1 ) [ 3( k + 2 ) ]
Mà các số nguyên tố lớn hơn 3 đều là số nguyên tố lẻ
=> 3k+1 là số chẵn
=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 2 và 3
=> ( 3k + 1 ) [ 3( k + 2 ) ] chia hết cho cả 6 kéo theo ( p - 1 ) ( p + 4 ) chia hết cho 6
Vậy với mọi p ta có ( p - 1 ) ( p + 4 ) chia hết cho 6
P/s tham khảo nha