Cho đường tròn (O;R) đường kính BC . trên tia đối của tia BC lấy điểm A. Qua A vẽ đường d vuông góc với BC . kẻ tiếp tuyến AM với đường tròn (O;R) ( M là tiếp điểm ) đường thẳng CM cắt đường thẳng d tại E . đường thẳng BE cắt đường tròn (O;R) tại N . CMR :
a) tứ giác ABME là tứ giác nội tiếp
b) AN là tiếp tuyến của (O;R)
c) AE; BM ; CN đồng quy
mấy pn ơi giúp mik với
mik làm đc câu a và b rồi còn câu c thôi
làm giúp mik câu c với
cho tam giác ABC cân tại A nội tiếp đường tròn tâm O bán kính R biết AB=10 cm BC=12cm tính R và khoảng cách từ O đến các cạnh của tam giác ABC
Cho tam giác ABC cân tại A , nội tiếp đường tròn (O) . Đường cao AH cắt đường tròn tại D.
a. cm : AD là đương kính của đường tròn (O)
b. tính số đo góc ACD
c. Cho BC=24cm, AC=20 cm . Tính AH và bán kính đường tròn (O)
Cho (O,R) đường kính AB . Gọi C là điểm thuộc đường tròn (O) sao cho AC>BC
a, Chứng minh tam giác ABC vuông
b, Tiếp tuyến tại A và C của (O) cắt nhau tại D. Chứng minh OD vuông góc AC
c, Gọi H là giao điểm OD và AC . CHứng minh 4HO.HD= \(AC^2\)
d, Qua O vẽ đường thẳng vuông góc với BD tại K cắt tia AC taik M
Chứng minh MB là tiếp tuyến của đường tròn (O)
Cho đường tròn (O;R), đường kính AB. Lấy điểm C tùy ý trên cung AB sao cho AB < AC.
a) Chứng minh tam giác ABC vuông.
b) Qua A vẽ tiếp tuyến (d) với đường tròn (O), BC cắt (d) tại F. Qua C vẽ tiếp tuyến (d’) với đường tròn (O), (d’) cắt (d) tại D. Chứng minh : DA =DF.
c) Hạ CH vuông góc AB (H thuộc AB), BD cắt CH tại K. Chứng minh K là trung điểm CH.
d) Tia AK cắt DC tại E. Chứng minh EB là tiếp tuyến của (O) , suy ra OE // CA.
Giúp tôi giải câu b),c)
Tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn (O). Tiếp tuyến tại B và C của đường tròn lần lượt cắt tia AC và tia AB ở D và E. Chứng minh :
a) \(BD^2=AD.CD\)
b) Tứ giác BCDE là tứ giác nội tiếp
c) BC song song với DE
Cho đường tròn tâm O đường kính AB. Kẻ tiếp tuyến Ax của (O) (A là tiếp điểm). Trên Ax lấy điểm I bất kỳ khác A, kẻ tiếp tuyến IC với (O)(A là tiếp điểm), BC cắt Ax tại D.A)
a) Chứng minh tứ giác OAIC nội tiếp và OI // DB
b) Gọi E là giao điểm của IB và (O), E khác B.
c) Kẻ đường cao AH của tam giác ABC, H thuộc BC, DE cắt(O) tại F. Chứng minh C, H, F thẳng hàng.
d) Gọi K là giao điểm của BI, CH. Chứng minh diện tích tam giác ABK bằng tổng diện tích tam giác AKC và BKC.
Bài 1: Cho đường tròn tâm O, đường kính AB. Lấy C thuộc đường tròn tâm O. Kẻ tiếp tuyến tại A của đường tròn tâm O cắt BC tại D. Gọi M là trung điểm của AD.
a) CM: MC là tiếp tuyến của đường tròn tâm O
b) CM: MO vuông góc với AC tại trung điểm I của AC
Bài 2: Từ điểm P nằm ngoài đường tròn tâm O bán kính R. Vẽ 2 tiếp tuyến PA, PB (A, B là các tiếp điểm). Gọi H là chân đường vuông góc kẻ từ A đến đường kính BC. Chứng minh rằng PC giao AH tại trung điểm I của AH
Cho tam giác ABC cân nội tiếp đường tròn O vẽ 2 đường kính AE và BD. Từ A kẻ AM vuông góc CD. Gọi H là giao điểm của AE và BC.
a) C/m AE vuông góc BC.
b) C/m tứ giác AHCM là hình chữ nhật.