Cho hai đường tròn (O; 9cm) và (O' 4cm) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O), C ∈ (O’). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I.Tính BC
cho (O;R) và (O'r) tiếp xúc tại A. Đường thẳng OO' cắt (O;R) (O'r) tại B,C(B,C khác A).Tiếp tuyến chung ngoài EF(E thuộc (O), F thuộc (O'). BE cắt CF tại M.
1. Cm; MA là tiếp tuyến chung của (O)và (O')
2. Tính EF theo R và r.
3. Định dạng các đường tròn (O;R) và (O'r) sao cho S tam giác BCM lớn nhất.
cho (O;R) và (O'r) tiếp xúc tại A. Đường thẳng OO' cắt (O;R) (O'r) tại B,C(B,C khác A).Tiếp tuyến chung ngoài EF(E thuộc (O), F thuộc (O'). BE cắt CF tại M.
1. Cm; MA là tiếp tuyến chung của (O)và (O')
2. Tính EF theo R và r.
3. Định dạng các đường tròn (O;R) và (O'r) sao cho S tam giác BCM lớn nhất.
cho đường tròn (O;R) từ điểm A ở bên ngoài đường tròn sao cho OA = 2R. Kẻ 2 tiếp tuyến AB,AC với đường tròn ( B,C tiếp điểm)
a) vẽ đường kính COD. C/Minh BD//AO
b) gọi E là 1 điểm thuộc cung nhỏ BC. kẻ tiếp tuyến với đường tròn tại E cắt AB và AC theo thức tự M,N. TÍNH GÓC MON VÀ chu vi tam giác AMN
BÀI 1 : Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Đường nối tâm OO' cắt (O) ở B, cắt (O') ở C. DE là một tiếp tuyến chung ngoài của hai đường tròn (D thuộc (O), E thuộc (O')). Gọi M là giao điểm của BD và CE. Chứng minh :
a) góc MDE vuông
b) MA là tiếp tuyến chung của (O) và (O')
c) MD . MB = ME . MC
BÀI 2 : Cho (O;R) và ( I ; r) tiếp xúc ngoài tại A . Vẽ tiếp tuyến chung ngoài BC ( BC thuộc (O) ; C thuộc (I) ). Tiếp tuyến tại A có hai đường tròn cắt BC ở M. Chứng minh:
a) M là trung điểm BC
b) tam giác ABC và tam giác DMI vuông
c) Tính BC theo R và r
BÀI 3 : Cho (O:R) và (O`; r) tiếp xúc ngoài tại A . Gọi BC , DE là các tiếp tuyến chung ngoài của 2 đường tròn ( B,D thuộc (O) . Chứng minh :
a) BDEC là hình thang cân
b) Tính diện tích BDEC theo R và r
BÀI 4 : Cho nửa đường tròn tâm O , đường kính AB. VẼ (O`) đường kính OA . Qua A vẽ dây AC của (O) cắt (O`) ở M . Chứng kinh :
a) (O) và (O`) tiếp xúc nhau
b) O`M // OC
c) M là trung điểm của AC và OM // BC
Cho hai đường tròn (O,R) và (O',R') (R>R') tiếp xúc ngoài tại A. Qua A kẻ đường thẳng m cắt (O) tại C, và d2 là tiếp tuyến của (O') tại D.
a. Chứng mính d1//d2
b. Trên cùng một nửa mặt phẳng bờ OO' không chứa C, vẽ hai bán kính OE và OF sao cho OE//OF(F khác D). Tính góc EAF
c. Đường thẳng OO' cắt đường thẳng EF tại H. Tính OH theo R và R'
d. Vẽ đường kính FI của (O'). Chứng minh CE//ID
Cho (O) và (O') tiếp xúc ngoài tại A, BC là tiếp tuyến chung ngoài của 2 đường tròn (B thuộc (O), C thuộc (O')). Vẽ AI là tiếp tuyến chung trong của 2 đường tròn (I nằm trên BC). Vẽ đường kính BD của (O) và đường kính CE của (O').
a) Chứng minh rằng: B,A,E thẳng hàng và C,A,D thẳng hàng
b) Chứng minh diện tích 2 tam giác ABC va DAF bằng nhau
c) K là trung điểm của DE. Chứng minh rằng đường tròn ngoại tiếp tam giác OKO' tiếp xúc với BC