Cho đường tròn (O:R) và một điểm M nằm ngoài đường tròn sao cho MO=2R. Từ M vẽ tiếp tuyến MA với (O); tia OM cắt đường tròn tại B
a) Tính số đo cung AB
b) Kẻ tiếp tuyến MC với (O). Chứng minh OM vuông góc với AC
c) Gọi H là giao điểm của AC và OB. Chứng minh HA.HC=HB.HM
d) Chứng minh OABC là hình thoi
cho (O;R) vẽ dây AB khác đường kính . M trung điểm AB,OM cắt đường tròn tại E . Chứng tỏ E là điểm chính giữa cung nhỏ AB
cho đường tron (O), đường kính AB. Vẽ dây EF vuông góc với OB tại C. Từ E kẻ EG song song với AB, I là trung điểm của EG. C/m a) cung AG bằng cung BF b) tứ giác OIEC là hcn c) CI song song với FG
Cho đường tròn (O), bán kính OA. Dây BC vuông góc với bán kính OA tại trung điểm H của OA. Tính số đo cung nhỏ BC và số đo cung lớn BC
Cho đường tròn tâm O bán kính bằng 3 cm và điểm A Trên đường tròn trên tiếp tuyến tại A với đường tròn qua điểm B sao cho OB = 6 cm tia AB cắt đường tròn tâm O tại C Tính số đo các cung AC
Cho đoạn thẳng AB=13cm, trên đó lấy điểm C thuộc AB sao cho ac=9cm. Trên tia Cx vuông góc AB lấy điểm D sao cho CD=6cm. Vẽ đường tròn tâm O, đường kính AB
a) CRM: D thuộc (O) đường kính AB
b) so sánh 2 cung nhỏ BD và AD
c) gọi E là trung điểm AB, P là trung điểm BD. Tia OE cắt (O) tại Q, OP cắt (O) tại M. Tính số đo cung MQ
Cho (O) đường kính AB . Trên cùng 1 nửa đường tròn lấy 2 điểm C , D . Kẻ CH vuông góc AB tại H cắt đường tròn (O) tại điểm thứ hai là E . Kẻ AK vuông góc CD tại K , AK cắt đường tròn tại điểm thứ hai là F .Chứng minh
a. HAi cung nhỏ CF và DB bằng nhau
b. HAi cung nhỏ BF và DE bằng nhau
c. DE = BF
Hai tiếp tuyến của đường tròn (O) tại A và B cắt nhau tại M. Biết \(\widehat{AMB}=35^o.\)
a) Tính số đo của góc ở tâm tạo bở hai bán kính OA, OB.
b) Tính số đo mỗi cung AB (cung lớn và cung nhỏ).
1. Cho đường tròn (O) dây AB. Trên dây AB lấy D rồi nối d với C trên đường tròn ( C khác A; A,O,C không thẳng hàng). Các đường trung trực của AD và BC cắt nhau ở M. CMR : đường thẳng MO đi qua điểm chính giữa cung AC.
2. Cho nửa đường tròn tâm O đường kính AB = 2R. Chơi nửa mặt phẳng bờ AB chứa nửa đường tròn, lấy điểm S sao cho SA và SB lần lượt cắt nửa đường tròn tại M và N. Gọi H là giao điểm của AN và BM. Cm :
a) tứ giác SMHN nội tiếp được trong một đường tròn
b) SH vuông góc với AB
3.
a) Cho đường tròn ( O.R) với hai điểm A,B. Tìm quỹ tích trung điểm của các dây trên đường tròn có độ dài bằng dây AB.
b) Cho đường tròn (O,R) khối hai tiếp tuyến AB, AC. Một tiếp tuyến di động của đường tròn (O) cắt các đoạn thẳng AB, AC tại các điểm tương ứng P,Q. Gọi P',Q' theo thứ tự là giao điểm của các đoạn thẳng OP,OQ với đường tròn (O). CMR : Cung nhỏ P'Q' có số đo không đổi. Tìm quỹ tích trung điểm I của P'Q'.