Cho m≥n
so sánh:
a,4m+2012 và 4n+2022
b,-3m+2012 và -3n+2022
Giúp cai nka tối mik phải đi học
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Giúp cái nha chiều đi học rồi
cho M,N thuộc N* So sánh A=3m^3 + 3n^3 với B=4m x n^2
Cho x+y =a+b và x^2 +y^2 =a^2+b^2 . Chứng minh rằng x^2012+y^2012 =a^2012+b^2012
Cho m<n, hãy so sánh
a) 2022m và 2022n
b) -4m và -4n
cho m<n,hãy so sánh;
5m và 5n -3m và -3n
Rút gọn M=\(\frac{a^{30}+a^{20}+a^{10}+1}{a^{2042}+a^{2032}+a^{2022}+a^{2012}+a^{30}+a^{20}+a^{10}+1}\)
a)Tìm hai số chẵn liên tiếp mà hiệu các lập phương của hai số đó bằng 2012
b)Cho 2012 số thực khác nhau. Biết tích của 13 số bất ký trong 2012 số đó luôn là một số dương. C/m 2012 số đó đều dương
c)Cho 5 số nguyên khác không:a, b, c,d,k và abc/dk<0. Ss (bcd/ka)+(cdk/ab)+(dka/bc) và số 0
d)Cho biết tồn tại hai số thực a, b thỏa a+b=2 và a^3+b^3=14. Tìm giá trị a^5+b^5