Có M=N
=>a-b+c+1=a+2
=>-b+c+1=a+2-a
=>-b+c+1=2
=> c-b=1
Hai số nguyên liền nhau là 2 số có khoảng cách bằng 1
=> c,b là hai số nguyên liền nhau.
Học tốt =P
Có M=N
=>a-b+c+1=a+2
=>-b+c+1=a+2-a
=>-b+c+1=2
=> c-b=1
Hai số nguyên liền nhau là 2 số có khoảng cách bằng 1
=> c,b là hai số nguyên liền nhau.
Học tốt =P
Cho A= a-b+c+1 ;B=a+2 với a,b,c thuộc Z . Biết A=B ,chứng minh rằng b và c là hai số nguyên liền nhau
Cho số M = a - b + c + 1
Số N = a + 2
Biết M = N . Chứng minh rằng b và c là 2 số nguyên liền nhau
a) Cho M = (-a+b) - (b+c-a) + (c-a) trong đó b,c thuộc Z còn a là số nguyên âm. Chứng tỏ M luôn là số nguyên dương
b) Cho A= a=b+c+1
B= a+2 với a,b,c thuộc Z
Tính A-B
Tính A-(-B)
Nếu A=B chứng tỏ c là số liền sau của b
GIÚP MK NHÉ
1. Cho hai số nguyên
A=(x+y)-(z+t)
B=(x-z)+(y-t)
Hãy so sánh A và B
2. Tìm số nguyên x, biết rằng tổng của ba số 3, -2 và x bằng 5
3. Cho a,b,c, thuộc Z. Chứng tỏ a-b-c và b+c-a là hai số đối nhau.
4.Cho a, b, c, d thuộc Z. Đơn giản các biểu thức sau:
a) M= (a - b) + (b - c) - (d - c)- (a - d)
b) N = (a + b) + (c - d) - (c + a) - (b - d).
1.Cho A = a - b + c + 1 và B = a+2 với a,b,c thuộc Z.Biết A=B,Chứng Minh b và c là 2 số liền nhau
2.Cho M = (-a + b )- ( b+ c - a ) + (c - a ) . Trong đó b,c thuộc Z . a là số nguyên âm . Chứng Minh biểu thức M luôn dương
LƯU Ý : nhớ viết cách giải và kết quả chứ ko ghi mỗi đáp án
1. Cho các số nguyên a, b, c, d thỏa mãn: a + b = c + d; ab + 1 = cd
Chứng tỏ rằng: c = d
2. Có tồn tại cặp số nguyên (a; b) nào thỏa mãn đẳng thức sau:
a) -252a + 72b = 2013
b) 512a - 104 = -2002
3. Cho m và n là các số nguyên dương:
A = \(\frac{2+4+6+...+2m}{m}\)
B = \(\frac{2+4+6+...+2n}{n}\)
Biết A<B, hãy so sánh m và n
4. Cho a, b, c, d thuộc Z thỏa mãn: a - ( b + c ) = d. Chứng tỏ rằng: a - c = b + d
cho A=a-b+c+1
B=a+2
Biết A=B. Chứng tỏ rằng c và b là 2 số nguyên liền nhau
a, Tìm số tự nhiên n sao cho(4-n)chia hết cho (n+1)
b, Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3)×(n+6) chia hết cho 2
c, Cho a, b là hai số nguyên tố cùng nhau. Chứng minh rằng a và a+b cũng là 2 số nguyên tố cùng nhau
Cho M = (-a b) - (b c-a) + (c-a) trong đó b,c thuộc Z còn a là số nguyên âm . Chứng tỏ rằng M luôn nguyên dương