Cho k1 , k2 , k3 là các số thực; A,B,C là các biểu thức bất kì ;
Tổng hệ số tự do của phép lũy thừa(Gọi là M) : \(\left(k_1A+k_2B+k_3C\right)^n\)(với n là số tự nhiên khác 0)
CMR: \(M=\left(k_1+k_2+k_3\right)^n\)
1.Tìm tất cả các số nguyên tố p sao cho só 2p+2 là tích 2 số tự nhên liên tiếp
2.Cho a, b, c, d là 4 số thực đôi 1 khác nhau. Biết rằng a,b là 2 nghiệm của phương trình \(x^2+mx+1=0\) (m, n là 2 số thực).
CM pt \(\left(a-c\right)\left(b-c\right)x^2+2\left(a-b\right)\left(c-d\right)x+\left(a-d\right)\left(d-b\right)=0\)
có 2 nghiệm thực phân biệt
1. Tìm tất cả các số tự nhiên n sao cho: P = 1! + 2! + 3! + ... + n! là số chính phương
2. Chứng minh rằng với n là số nguyên dương bất kì thì:
\(A=1+\frac{1}{4}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1,65\)
3. Tìm tất cả các số tự nhiên không là tổng của 2 hợp số.
4. Tìm các số nguyên x,y thỏa mãn : \(\left(x+2003\right)\left(x+2005\right).4^y=3025\)
Bài 1. (2,0 điểm)
a) Cho biểu thức: \(A = \left( {\frac{{2\sqrt x + 1}}{{x + 2\sqrt x + 1}} + \frac{{1 - 2\sqrt x }}{{x - 1}}} \right).\left( {1 + \frac{1}{{\sqrt x }}} \right)\) với x>0;x≠1. Rút gọn biểu thức A và tìm các giá trị nguyên của x để A là số nguyên.
b) Cho biểu thức:
\(M = \left( {\sqrt x + \sqrt {x + 1} + \sqrt {x + 2} } \right)\left( {\sqrt x + \sqrt {x + 1} - \sqrt {x + 2} } \right)\left( {\sqrt x - \sqrt {x + 1} + \sqrt {x + 2} } \right)\left( { - \sqrt x + \sqrt {x + 1} + \sqrt {x + 2} } \right)\)
Với x là số tự nhiên khác 0. Chứng minh M cũng là số tự nhiên.
a) Cho các số a,b,c là các số hữu tỉ đôi một khác nhau CMR:
\(B=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\) Là bình phương của một số hữu tỷ
b) Cho các số a,b,c là các số thực dương CMR: \(\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\ge2\left(a+b+c\right)\)
c) Tìm tất cả các số nguyên dương n sao cho \(n^4+n^3+1\)là số chính phương
C1: Giả sử x,y là những số thực dương phân biệt tm:
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
CMR 5y=4x
C2: Giả sử a,b,c là các số thực dương tm a+b+c=abc
\(\frac{a}{1+a^2}+\frac{2b}{1+b^2}+\frac{3c}{1+c^2}=\frac{abc\left(5a+4b+3c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
C3: Cho a,b,c khác 0 tm \(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a+b\right)^2=4abc\)
CMR : \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)với n là số tự nhiên lẻ
C4: Cho các số a,b,x,y tm : ab khác 0 ; a+b khác 0 ; \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\); \(x^2+y^2=1\)
CMR : a, \(ay^2=bx^2\)
b, \(\frac{x^{200}}{a^{100}}+\frac{y^{200}}{b^{100}}=\frac{2}{\left(a+b\right)^{100}}\)
Với \(n\) là số lẻ thì: \(a^n-b^n=\left(a-b\right)\cdot A\)
\(a^n+b^n=\left(a+b\right)\cdot B\)
Với \(n\) là số chẳn thì: \(a^n-b^n=\left(a-b\right)\cdot C=\left(a+b\right)\cdot D\)
Tìm các biểu thức \(A,B,C,D\)
Với mọi n là số tự nhiên khác 0, chứng minh biểu thức
\(A_n=n+\left[\sqrt[3]{n-\frac{1}{27}}+\frac{1}{3}\right]^2\)không viết được dưới dạng lập phương của một số nguyên dương
Xác định tất cả các cặp số thực (a,b) sao cho: \(a\left[bn\right]=b\left[an\right]\forall n\in N\), n khác 0.
Trong đó kí hiệu \(\left[x\right]\)là phần nguyên của số thực x.