a) Cho đường tròn tâm O bán kính R. Hai dây AB và CD bằng nhau và vuông gócvới nhau tại I. Chứng minh rằng \(IA^2+IB^2+IC^2+ID^2\) không đổi.b) Trong đường tròn tâm O vẽ dây cung AD không đi qua O. Đường kính vuônggóc với OA cắt tiếp tuyến tại D của (O) tại điểm C. Chứng minh rằng phân giác của gócDCO song song với đường trung trực của AD
Cho đường tròn tâm O, đường kính AB. Qua điểm C thuộc đường tròn (C khác A và B) kẻ tiếp tuyến d với đường tròn. Từ O kẻ đường thẳng vuông góc với BC cắt BC tại I và cắt tiếp tuyến d tại M.
a) chứng minh IB = IC
b) chứng minh △MBO = ΔMCO, suy ra MB là tiếp tuyến của đường tròn tâm O
c) từ A kẻ AE vuông góc với d (E thuộc d), từ C kẻ CH vuông góc với AB (H thuộc AB). chứng minh CE2 = AE.BH
Cho đường tròn O bán kính R, M ở trong O, kẻ dây AB và CD vuông góc với nhau tại M . Chứng minh : Đường cao MN của tam giác AMD đi qua trung điểm I của BC
1. Cho đường tròn (O:R), dây BC khác đường kính. Qua O kẻ đường vuông góc với BC tại I, cắt tiếp tuyến tại B của đường tròn tại điểm A, vẽ đường kính BD.
a) Chứng minh: CD//OA
b) Chứng minh: AC là tiếp tuyến của đường tròn (O)
c) Đường thẳng vuông góc với BD tại O cắt BC tại K. Chứng minh \(\text{IK.IC+OI.IA=}R^2\)
Cho đường tròn (O) đường kính AC, điểm B nằm giữa hai điểm O và C. Vẽ đường tròn tâm O’ đường kính BC. Gọi M là trung điểm của đoạn thẳng AB. Từ M vẽ dây cung DE của đường tròn (O) vuông góc với AB; DC cắt đường tròn tâm O’ tại I. Chứng minh:
1. Tứ giác ADBE là hình thoi.
2. Tứ giác DMBI nội tiếp đường tròn (4 điểm D, M, B, I nằm trên cùng một đường tròn).
3. MC.DB = MI.DC.
4. MI là tiếp tuyến của đường tròn (O’).
Cho đường tròn (O) đường kính AC, điểm B nằm giữa hai điểm O và C. Vẽ đường tròn tâm O’ đường kính BC. Gọi M là trung điểm của đoạn thẳng AB. Từ M vẽ dây cung DE của đường tròn (O) vuông góc với AB; DC cắt đường tròn tâm O’ tại I. Chứng minh:
1. Tứ giác ADBE là hình thoi.
2. Tứ giác DMBI nội tiếp đường tròn (4 điểm D, M, B, I nằm trên cùng một đường tròn).
3. MC.DB = MI.DC.
4. MI là tiếp tuyến của đường tròn (O’).
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.
Cho đường tròn tâm O, đường kính AB, điểm I thay đổi trên đoạn OA ( khác A). Đường thẳng qua I vuông góc với AB cắt (O) tại C và D. Trên tia đối của tia BA lấy điểm S cố định. Đoạn CS cắt (O) tại M, gọi E là giao điểm của DM và AB.
a) Chứng minh tam giác SBC và tam giác SMA đồng dạng.
b) Chứng minh độ dài đoạn OE không phụ thuộc vào vị trí của điểm I.
Cho đường tròn tâm O bán kính R và đường thẳng (d) cắt đường tròn tâm O tại hai điểm C và D (đường thẳng d không đi qua tâm O). Từ điểm S bất kì thuộc tia CD (S nằm ngoài đường tròn tâm O), kẻ hai tiếp tuyến SA và SB với đường tròn tâm O (với A và B là các tiếp điểm). Gọi H là trung điểm của đoạn CD và E là giao điểm của AB với SC. Chứng minh rằng: Khi S di chuyển trên tia CD (S nằm ngoài đường tròn tâm O) thì đường thẳng AB luôn đi qua 1 điểm cố định