Cho hình vuông ABCD. Trên tia đối của tia CD lấy điểm M bất kì (CM<CD). Vẽ hình vuông CMNP (P nằm giữa B và C). DP cắt BM tại H, MP cắt BD tại K.
a) Chứng minh DH vuông góc với BM
b) Tính Q = \(\dfrac{PC}{BC}\) + \(\dfrac{PH}{DH}\) + \(\dfrac{KP}{MK}\)
c) Chứng minh rằng MP.MK + DK.BD = \(^{DM^2}\)
Bài 5. Cho tam giác ABC nhọn (AB<AC). Trên cạnh AB, AC lấy các điểm D và E sao cho BD =
CE. Gọi M, N, P, Q là trung điểm các cạnh BC,CD,DE,BE.
1) Chứng minh tứ giác MNPQ là hình thoi.
2) Đường thẳng MP cắt cạnh AC tại F.Chứng minh AB+AF = CF và MP song song với phân
giác của góc BAC
3) Đường thẳng NQ cắt AB, AC tại H,K. Chứng minh tam giác AHK cân tại A
giúp câu bc vs ạ
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của cạnh BC. Kẻ DE vuông góc AB, DF vuông góc AC
a) Chứng minh DA = DF
b) Chứng minh tứ giác AHEF là hình bình hành và tứ giác AHBD là hình thoi
c) Trên tia đối của tia FD lấy I sao cho FI = FD. Chứng minh I đối xứng với H qua A
Bài 2: Cho ∆ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = BA. Trên tia đối của tia CB lấy điểm E sao cho CE = CA. Kẻ BH ⊥ AD, CK ⊥ AE. Chứng minh rằng:
a) AH = HD b) HK // BC
Bài 3: Cho hình thang ABCD (AB // CD). Các đường phân giác của góc ngoài tại đỉnh A và D cắt nhau ở M. Các đường phân giác của góc ngoài tạo đỉnh B và C cắt nhau ở N.
a) Chứng minh: MN // CD
b) Tính chu vi ABCD biết MN = 4cm.
Cho tam giác ABC vuông tại A, có N và M lần lượt là trung điểm của AB và AC.
a) Chứng minh MNBC là hình thang.
b) Trên tia đối của tia MB lấy F sao cho MF = MB. Chứng minh AB song song CF.
c) Qua B vẽ đường thẳng vuông góc BC và cắt đường thẳng AC tại I. Chứng minh NI vuông góc BM.
giải giúp e với ạ
Cho tam giác ABC vuông tại A, có N và M lần lượt là trung điểm của AB và AC.
a) Chứng minh MNBC là hình thang.
b) Trên tia đối của tia MB lấy F sao cho MF = MB. Chứng minh AB song song CF.
c) Qua B vẽ đường thẳng vuông góc BC và cắt đường thẳng AC tại I. Chứng minh NI vuông góc BM.
Bài 1 : Cho tam giác ABC có AB = 12cm , AC = 15cm , BC = 20 cm . Trên AC lấy điểm M sao cho AM = 5cm , kẻ MN // BC (N ϵAB ), Kẻ NQ//AC (Q ϵBC ) .Tính AN , QB .
Bài 2 : Trên các cạnh của AB , AC của tam giác ABC lần lượt lấy M, N sao cho \(\frac{AM}{MB}=\frac{AN}{NC}\) . Gọi I là trung điểm của BC , K là giao điểm của AI và MN . Chứng minh KM =KN .
Bài 3: Cho hình vuông ABCD cạnh 6cm . Trên tia đói của tia AD lấy điểm I sao cho AI = 2cm . IC cắt AB tạI K . Tính độ dài IK và IC
Cho tam giác ABC có ba góc nhọn gọi N,P là trung điểm của các cạnh AC,BC Trên tia đối của tia NP,Lấy điểm E sao cho NE=NP
Chứng minh tam giác AEM =tam giác CPN,EAN=PCN
Chứng minh AE // BC AE=1/2 BC
Từ C kẻ CK vuông góc với PN tại K. Từ K kẻ AH vuông góc với NE tại H Chứng minh AH=CK
Trên AE lấy điểm D Trên CPLấy điểm G sao cho AD=CG Chứng minh ba điểm D,G,N thảng hàng
cho tam giác ABC, các điểm M,N,P lần lượt là trung điểm của các cạnh AB, AC, BC, trên tia đối của tia NP lấy điểm D sao cho ND=NP.
a) chứng minh: tứ giác ADCP là hình bình hành
b) gọi F là giao điểm của MN và DC. giả sử MN=3cm. tính BC và chứng minh FD=FC
c) gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. chứng minh B, I, F thẳng hàng
Cho tam giác ABCvuông tại A có N,M,E lần lượt là trun điểm của AB,AC,BC trên tia đối của tia MB lấy điểm F sao cho MF=MB.
a/ Chứng minh tứ giác ABCF là hình bình hành.
b/ Trên đoạn AF lấy điểm D sao cho AD=CE. Chứng minh tứ giác AECD là hình thoi.
c/ Qua B vẽ đường thẳng vuông góc với BC, cắt đường thẳng CA tại I. chứng minh IN vuông góc với BM