Cho hình thang cân ABCD (AB > CD, AB // CD) nội tiếp trong đường tròn (O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao điểm của hai đường chéo AC và BD.
1. Chứng minh tứ giác AEDM nội tiếp được trong một đường tròn.
2. Chứng minh AB // EM.
3. Đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K. Chứng minh M là trung điểm HK.
4. Chứng minh: 2/HK=1/AB+1/CD
Cho hình thang cân ABCD (AB>CD, AB//CD) nội tiếp trong đường tròn (O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao điểm của hai đường chéo AC và BD.
a) Chứng minh tứ giác AEDO nội tiếp được trong một đường tròn.
b) chứng minh AB// EM
c) đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K. Chứng minh 2/HK= 1/AB +1/CD.
Bài 1 Cho hình thang cân ABCD (AB > CD, AB // CD) nội tiếp trong đường tròn
(O). Kẻ các tiếp tuyến với đường tròn (O) tại A và D chúng cắt nhau ở E. Gọi M là giao
điểm của hai đường chéo AC và BD.
1. Chứng minh tứ giác AEDM nội tiếp được trong một đường tròn.
2. Chứng minh AB // EM.
3. Đường thẳng EM cắt cạnh bên AD và BC của hình thang lần lượt ở H và K.
Chứng minh M là trung điểm HK.
4. Chứng minh \(\frac{2}{HK}=\frac{1}{AB}+\frac{1}{CD}\)
Cho hình thang cân ABCD (BC//AD), hai đường chéo AC, BD cắt nhau tại điểm O sao cho góc BOC = 60 độ. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BC,OA,AB,CD.
a) Chứng minh tứ giác DMNC nội tiếp được
b) Chứng minh tam giác MNQ là tam giác đều
c) So sánh các góc MQP, QND, NMC
d) Chứng minh trực tâm của tam giác MNQ thẳng hàng với O, I
1 Cho hình thang ABCD ( BC // AD), hai đường chéo AC và BD cắt nhau tại O, góc BOC bằng 60 độ. Gọi M, N,P,Q lần lượt là trung điểm của BC , OA, OB, AB, CD. a)Chứng minh tứ giác DMNC nội tiếp
b) tam giác MNQ đều C
c) Gọi H là trực tâm tam giác MNQ. Chứng minh H, O , I thẳng hàng
Giải bài toán hình lớp 9 Cho hình thang ABCD (AB//CD) nội tiếp (O) . Các đường chéo AC,BD cắt nhau tại E , các cạnh bên AD,BC kéo dài cắt nhau tại F. a) Chứng minh tam giác OAC= tam giác OBD b) Chứng minh tứ giác ADOE và tứ giác AOFC nội tiếp c) Gọi M,N theo thứ tự là trung điểm của BD,AC và P là hình chiếu của B lên dường thẳng CD.Chứng minh tứ giác MNCP là hình bình hành d) Cho góc DOC=120 độ , góc AOB=90 độ , tính diện tích tứ giác ABCD theo R
Cho tứ giác ABCD nội tiếp đường tròn tâm O (AB>CD). GỌi giao điểm của AC và BD là I. Đường tròn ngoại tiếp tam giác ADI cắt AB và CD lần lượt tại E và F, EF cắt AC và BD tại M, N.
a, Chứng minh IE = IF
b, Chứng minh EF//BC và tứ giác AMND nội tiếp
c, Gọi K là tâm đường tròn ngoại tiếp tam giác ADI.
Chứng minh rằng KI vuông góc với BC
(Mình cần làm giúp phần (c) thôi ạ, cảm ơn)
Cho hình thang cân ABCD (BC//AD) hai đường chéo AC, BD cắt nhau tại điểm O sao cho góc BOC bằng 60 độ, goị I,M,N,P,Q lần lượt là trung điểm của các đoạn BC,OA,OB,AB,CD.
a, CMR tứ giác DMCN nội tiếp
b,CMR tam giác MNQ đều
c,Gọi H là trực tâm của tam gic MNQ, chứng minh H,O,I thửng hàng
Cho hình thang cân ABCD (BC//AD), hai đường chéo AC, BD cắt nhau tại điểm O sao cho \widehat{BOC} = 60 độ. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BC,OA,AB,CD.a) Chứng minh tứ giác DMNC nội tiếp đượcb) Chứng minh tam giác MNQ là tam giác đềuc) So sánh các góc \widehat{MQP}, \widehat{QND}, \widehat{NMC} d) Chứng minh trực tâm của tam giác MNQ thẳng hàng với O, I