Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, S A ⊥ A B C D . Kẻ A H ⊥ S B ; A K ⊥ S D . Mặt phẳng (AHK) cắt SC tại I. Tính thể tích khối cầu ngoại tiếp khối ABCDIHK.
A. πa 3 6 3
B. 2 3 πa 3
C. 2 2 3 πa 3
D. πa 3 3 2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh cạnh SA vuông góc với mặt phẳng đáy. Mặt phẳng qua A và vuông góc SC cắt các cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Tính thể tích V của khối cầu ngoại tiếp tứ diện CMNP
A. V = 2 24
B. V = π 2 12
C. V = 3 π 2
D. V = 4 π 3
Cho hình chóp S.ABCD có đáy là hình vuông cạnh cạnh 2 2 bên SA vuông góc với mặt phẳng đáy và SA = 3 Mặt phẳng qua A và vuông góc với SC cắt cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Thể tích V của khối cầu ngoại tiếp tứ diện CMNP
A. V = 125 π 6
B. V = 32 π 3
C. V = 108 π 3
D. V = 64 2 π 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt đáy. Mặt phẳng α qua A và vuông góc với SC cắt các cạn SB, SC, SD lần lượt tại các điểm M, N, P. Tính thể tích V của khối cầu ngoại tiếp tứ diện CMNP.
A. V = 108 π 3
B. V = 64 2 π 3
C. V = 125 π 6
D. V = 32 π 3
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA vuông góc với đáy S A = a 2 . Gọi B, D là hình chiếu của A lần lượt lên SB, SD. Mặt phẳng cắt SC tại C'. Thể tích khối chóp S.AB'C'D' là:
A. V = 2 a 3 3 9
B. V = 2 a 3 2 3
C. V = a 3 2 9
D. V = 2 a 3 3 3
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt phẳng đáy. Mặt phẳng ( α ) qua A và vuông góc với SC cắt cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Thể tích V của khối cầu ngoại tiếp tứ diện CMNP là
A. V = 32 π 3
B. 64 2 π 3
C. 108 π 3
D. 125 π 6
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = 2a. Gọi B’, D’ lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SD. Mặt phẳng (AB’D’) cắt cạnh SC tại C’. Tính thể tích của khối chóp S.AB’C’D’.
A. a 3 3
B. 16 a 3 45
C. a 3 2
D. a 3 2 2
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh bằng a, A B C ^ = 60 ° , S A = S B = S C , S D = 2 a . Gọi (P) là mặt phẳng qua A và vuông góc với SB tại K. Mặt phẳng (P) chia khối chóp S.ABCD thành hai phần có thể tích V 1 , V 2 trong đó V 1 là thể tích khối đa diện chứa đỉnh S. Tính V 1 V 2
A. 11
B. 7
C. 9
D. 4
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 5, BC = 2. Biết rằng SB = 4, SA = 3, SC = x, SD = y. Giá trị lớn nhất thể tích khối chóp S.ABCD là
A. 8.
B. 12 5 xy .
C. 24.
D. 8xy