Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhã Thanh

Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)

Tìm m\(\varepsilon\) Z để hệ có nghiệm duy nhất (x,y) mà x>0, y>0

Nguyen Ha
2 tháng 6 2017 lúc 17:51

\(\left\{{}\begin{matrix}x+my=2\left(1\right)\\mx-2y=1\left(2\right)\end{matrix}\right.\)

thay pt (1) vào pt (2) ta duoc:\(\left\{{}\begin{matrix}x+my=2\\mx-\left(x+my\right)y=1\left(3\right)\end{matrix}\right.\)

PT (3) tương đương: \(mx-y^2m-yx-1=0\)

<=>\(-y^2m-yx+mx-1=0\)

\(\Delta=b^2-4ac=x^2-4.\left(-m\right).\left(mx-1\right)=x^2+4m^2x-4m\)

theo Vi-ét ta có:\(\left\{{}\begin{matrix}S=\dfrac{-b}{a}=\dfrac{-x}{m}\\P=\dfrac{c}{a}=\dfrac{-mx+1}{m}\end{matrix}\right.\)

Để pt có hai nghiệm lớn hơn 0<=>\(\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)hay \(\left\{{}\begin{matrix}x^2+4m^2x-4m>0\\\dfrac{-x}{m}>0\\\dfrac{-mx+1}{m}>0\end{matrix}\right.\)

tới chỗ này là tìm m được rồi.Chúc bạn học tốthihi


Các câu hỏi tương tự
Huy Jenify
Xem chi tiết
Huy Jenify
Xem chi tiết
Hải Yến Lê
Xem chi tiết
Thanh Hân
Xem chi tiết
Nguyễn Thanh Hải
Xem chi tiết
vi lê
Xem chi tiết
vi lê
Xem chi tiết
thu dinh
Xem chi tiết
Thanh Hân
Xem chi tiết