Bài 3a. Tính nguyên hàm - tích phân bằng phương pháp đổi biến số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tâm Cao

Cho hàm số f(x) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thoả mãn \(f\left(1\right)=0\) ; \(\int\limits^1_0\left[f'\left(x\right)\right]^2dx=7\) và \(\int\limits^1_0x^2f\left(x\right)dx=\dfrac{1}{3}\) . Tính \(I=\int\limits^1_0f\left(x\right)dx\) .

Nguyễn Việt Lâm
1 tháng 11 2021 lúc 13:24

Xét \(I=\int\limits^1_0x^2f\left(x\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=x^2dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=\dfrac{1}{3}x^3\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{3}x^3.f\left(x\right)|^1_0-\dfrac{1}{3}\int\limits^1_0x^3.f'\left(x\right)dx=-\dfrac{1}{3}\int\limits^1_0x^3f'\left(x\right)dx\)

\(\Rightarrow\int\limits^1_0x^3f'\left(x\right)dx=-1\)

Lại có: \(\int\limits^1_0x^6.dx=\dfrac{1}{7}\)

\(\Rightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx+14\int\limits^1_0x^3.f'\left(x\right)dx+49.\int\limits^1_0x^6dx=0\)

\(\Rightarrow\int\limits^1_0\left[f'\left(x\right)+7x^3\right]^2dx=0\)

\(\Rightarrow f'\left(x\right)+7x^3=0\)

\(\Rightarrow f'\left(x\right)=-7x^3\)

\(\Rightarrow f\left(x\right)=\int-7x^3dx=-\dfrac{7}{4}x^4+C\)

\(f\left(1\right)=0\Rightarrow C=\dfrac{7}{4}\)

\(\Rightarrow I=\int\limits^1_0\left(-\dfrac{7}{4}x^4+\dfrac{7}{4}\right)dx=...\)


Các câu hỏi tương tự
Phương Anh
Xem chi tiết
Phương Anh
Xem chi tiết
Nguyễn Thanh
Xem chi tiết
Nguyễn Thái Bình
Xem chi tiết
Đặng Minh Quân
Xem chi tiết
B.Trâm
Xem chi tiết
BÁ Long
Xem chi tiết
Đỗ Hạnh Quyên
Xem chi tiết
Thiên An
Xem chi tiết