Bài 15: Cho góc xOy khác góc bẹt với Oz là phân giác trong của góc xOy, trên Oz lấy điểm H. Qua H kẻ đường thẳng a vuông góc vs Oz và cắt 2 cạnh Ox, Oy lần lượt tại A và B
a) Vẽ hình
b) CM: OH là trung tuyến của tam giác OAB
GIUP MINK BT NAY NHA !!
Cho tam giác ABC có M,N lần lượt là trung điểm của cạnh AB và AC. Trên tia đối của tia NB lấy điểm D sao cho ND=NB. Trên tia đối của tia MC lấy điểm E sao cho ME=MC. Chứng minh
A) AD= BC
b) góc nhọn AE// BC
c) A là trung điểm của DE
Cho tam giác ABC có AB<AC,trung tuyến CM. Trên tia đối của tia MC lấy D sao cho MD=MC
a) Chứng minh AD=BC, AD//BC
b)Gọi K là điểm nằm trên cạnh AM sao cho AK=2KM, CK cắt AD tại N. Chứng minh rằng N là trung điểm AD
c)Gọi I là giao điểm của BN và CD. Chứng minh rằng CD=6MI
Cho góc xOy (khác góc bẹt). Trên tia Ox lấy A. trên tia Oy lấy B sao cho OA= OB. Tia phân giác Oz của góc xOy cắt AB tại C
a) Chứng minh: tam giác AOC= tam giác BOC. Từ đó suy ra OC⊥⊥AB
b) Trên tia đối của tia CO lấy điểm D sao cho CD= CO. Chứng minh: AD=BO; AD//BO
c) Gọi M là trung điểm của AD. N là trung điểm của OB. Chứng minh: M, C, N thẳng hàng
cho tam giác ABC vuông tạ A(AB<AC), D là trung điểm của BC, trên tia đối của tia DA lấy điểm E sao cho DE=DA. Gọi H,K lần lượt làchân đường vuông góc hạ từ B,C xuống đường thẳng AE, M là chân đường vuông góc hạ từ D xuống AC. Chứng Minh CK=BH
Cho tam giác ABC. Trên tia đối của tia BA lấy điểm D sao cho BD = BA. Trên cạnh BC lấy điểm E sao cho BE = 1/3 BC. Gọi K là giao điểm của AE và CD. Chứng minh rằng
a)DK = KC.
b) BC + AK > \(\dfrac{3}{2}\)AC
Bài 5: Cho tam giác ABC có ba góc nhọn. Ba đường trung tuyến AD, BE, CF cắt nhau tại G. Trên tia đối của tia DA lấy điểm M sao cho DG = DM. Trên tia đối của tia EB lấy điểm N sao cho EG = EN, trên tia đối của tia FC lấy điểm P sao cho FG = FP. a) Chứng minh CM // BE. b) Gọi I là trung điểm BG. Chứng minh P, I, M thẳng hàng. c) Gọi K là giao của MN và CG. Chứng minh K là trung điểm MN và GC. d) EF = IK và EF//IK. e) Chứng minh G là trọng tâm ∆MNP. f) Chứng minh PN // BC, PN = PC. g) Chứng minh ∆ABC = ∆MNP. h) Đường thẳng PE cắt BC tại H. Chứng minh BC = 1/2 CH. i) Chứng minh S GDE = 1/2 S GDC= 1/3 S EDC= 1/4 S GAB =1/6 S ABE= 1 S ABDE
Cho tam giác ABC. Trên tia đối của tia BA lấy điểm D sao cho BD = BA. Trên cạnh BC lấy điểm E sao cho \(BE=\dfrac{1}{3}BC\). Gọi K là giao điểm của AE và CD.
Chứng minh rằng DK = KC
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AB=AD. Trên cạnh AC lấy điểm E sao cho AE=1/2 AC
a) Chứng minh: E là trọng tâm của tam giác BCD
b) Gọi M là trung điểm của DC. Chứng minh: 3 điểm B;M;E thẳng hàng