Cho đường tròn (O) và đường thẳng xy không có điểm chung với đường tron f(O). Gọi A là hình chiếu của O trên đường thẳng xy. Qua A vẽ cát tuyến không đi qua O cắt đường tròn tại hai điểm B và C (AB < AC). Tiếp tuyến của đường tròn tại hai điểm B và C cắt đường thẳng xy lần lượt taiij M và N.
a) Chứng minh tứ giác ABOM nội tiếp.
b) Chứng minh góc BCO bằng góc ANO và tam giác OMN cân.
c) Giả sử đường tròn (O) và đường thẳng xy cố định. Từ M vẽ tiếp tuyến thứ hai ME với đường tròn (O), E là tiếp điểm khác B. Chứng minh khi cát tuyến ABC di chuyển quanh A thì BE luôn đi qua một điểm cố định.
GIÚP MÌNH CÂU C VỚI!!!
Cho đường tròn (O) và đường thẳng xy không cắt (O). Vẽ OA vuông góc với xy tại A. Qua A vẽ 1 cát tuyến bất kỳ cắt (O) tại B và C (B nằm giữa A và C). Tiếp tuyến tại B và C của (O) cắt xy tại D và E. Chứng minh:
a) Tứ giác OBAD nội tiếp
b) góc ODB = góc OEC
c) AE = AD
Cho đường tròn (O; R) và đường thẳng xy không có điểm chung với đường tròn. Lấy một điểm A bất kỳ thuộc xy. Từ A kẻ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm). Ọua B kẻ đường thẳng vuông góc với AO, cát AO tại K và cắt đường tròn (O) tại điểm thứ hai là c.
a) Tính độ dài OK nếu R = 5cm, OA = 10 cm.
b) Chứng minh ràng: AC là tiếp tuyến của đường tròn (O).
c) Kẻ OH vuông góc với xy tại H, BC cắt OH tại I. Chứng minh rằng: Khi A di chuyển trên đường thẳng xy thì độ dài đoạn thẳng OI không đổi.
Cho đường tròn (O) bán kính R và đường thẳng xy không có điểm chung với đường tròn. Lấy A bất kì thuộc xy. Từ A kẻ tiếp tuyến AB với đường tròn (O). Qua B kẻ đường thẳng vuông góc AO tại K cắt đường tròn O tại điểm thứ 2 là C.
a. Tính OK? nếu R= 5cm, OA= 10cm
b. CMR: OC là tiếp tuyến đường tròn O
c. Kẻ OH vuông góc xy tại H. BC cắt OH tại y. CMR: Khi A di chuyển trên đường thẳng xy thì độ dài OI không đổi.
1. Cho đường tròn ( O) và đường thẳng xy nằm ngoài đường tròn. Từ O kẻ OA vuông góc với xy. Qua A vẽ cát tuyến cắt đường tròn (O) ở B và C. Tiếp tuyến với đường tròn (O) tại B và C cắt xy ở D và E. Chứng minh: A là trung điểm của DE
2. Cho tứ giác ABCD có AB = BD nội tiếp đường tròn (O) . Từ A vẽ tiếp tuyến với đường tròn (O) cắt đường thẳng BC ở Q , gọi R là giao điểm của AB và CD. Chứng minh:
a) tứ giác AQRC nội tiếp được 1 đường tròn
b) QR//AD
cho đường tròn (O,R) và đg thẳng xy không có điểm chung với đg tròn. từ A thuộc xy kẻ tiếp tuyến AB với đg tròn (O) (B là tiếp điểm) Qua B kẻ đg thẳng vuông góc với AO, cắt AO tại K và cắt đg tròn (O) tại điểm thứ 2 là C. Tính OK biết R=5cm, OA=10cm
Cho đường tròn tâm 0 và điểm A nằm trên đường tròn đó.Vẽ đường tròn tâm I đi qua 0 và tiếp xúc với đường tròn(0)tại A.Qua A vẽ tiếp tuyến chung xy với 2 đường tròn.Dây AC của đường tròn(0) cắt(I) tại M,tia CO cắt (I)tại N.Đường thẳng OM cắt xy và tia AN lần lượt tại B và D chứng minh:
a) MA=MC
b)BC là tiếp tuyến của(0)
c)ABCD là hình thoi
bạn nào biết giải hộ mk nha thank you trước ạ
Bài 1. Cho đường tròn (o) và điểm M nằm ngoài (o). Qua M kẻ 2 tiếp tuyến MA, MB với (o), kẻ cát tuyến MPQ không đi qua tâm O, P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB,AQ lần lượt tại R và S. Gọi N là trung điểm của PQ
a. Cmr 5 điểm M,A,N,O,B cùng thuộc 1 đường tròn. Chỉ rõ tâm và bán kính của đường tròn đó
b. Cmr PRNB là tứ giác nội tiếp.
c. PR=RS
Bài 2. Cho (O,R) và (O',R') (R>R') cắt nhau tại A và B. Vẽ tiếp tuyến chung MN của 2 đường tròn, đường thẳng AB cắt MN tại I (B nằm giữa A và I). Cmr
a. ^BMN =^MAB
b. IN^2=IA.IB từ đó suy ra I là trung điểm của MN
c. Đường thẳng MA cắt đường thẳng NB tại Q, NA cắt MB tại P. Cmr MN//PQ