Ôn tập góc với đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thanh Thúy

Cho đường tròn (O,R) có R =3 và đường thẳng d không điểm chung với đường tròn. Gọi M là điểm thuộc thuộc đường thẳng d. Kẻ hai tiếp tuyến MA ,MA tới tại đường tròn. Hạ OH vuông d tại H. Nối AB cắt OH tại K, cắt OH tại K,cắt OM tại I.Tia OM cắt đường tròn (O,R) tại E.

a) Chứng minh tứ giác AOBM nội tiếp

b)Chứng minh AB vuông góc với OM từ đó c/m OK.OH=OI.OM.

c) Chứng minh E là tâm đường tròn nội tiếp tam giác MAB

Nhiên An Trần
4 tháng 4 2019 lúc 22:21

Hình bạn tự vẽ nha

a, (O;R) có: MA, MB là tiếp tuyến \(\Rightarrow MA\perp OA,MB\perp OB\), OM là phân giác \(\widehat{AOB}\)

Tứ giác OAMB có: \(\widehat{OAM}+\widehat{OBM}=90^o+90^o=180^o\) nên tứ giác OAMB nội tiếp

b, \(\Delta OAB\) có: \(OA=OB=R\Rightarrow\Delta OAB\) cân tại O có OM là phân giác nên OM là đường cao \(\Rightarrow AB\perp OM\)

Xét \(\Delta OIK\)\(\Delta OHM\) có:

\(\widehat{KOI}\) chung

\(\widehat{OIK}=\widehat{OHM}=90^o\)

\(\Rightarrow\Delta OIK\sim\Delta OHM\left(g-g\right)\Rightarrow\frac{OI}{OK}=\frac{OH}{OM}\Rightarrow OI.OM=OH.OK\)c, \(\Delta AEB\) có: EI là đường cao, phân giác nên \(\Delta AEB\) cân tại E \(\Rightarrow\widehat{EAB}=\widehat{EBA}\)

(O) có: \(\widehat{MBE}=\frac{1}{2}sđ\stackrel\frown{BE}\) (góc tạo bởi tiếp tuyến và dây cung = 1/2 số đo cung bị chắn)

\(\widehat{BAE}=\frac{1}{2}sđ\stackrel\frown{BE}\) (góc nội tiếp = 1/2 số đo cung bị chắn)

Từ 3 điều trên \(\Rightarrow\widehat{MBE}=\widehat{EBA}\)\(\Rightarrow\)EB là phân giác

\(\Delta MAB\) có: ME, EB là phân giác, \(ME\cap EB=\left\{E\right\}\) nên E là tâm đường tròn nội tiếp \(\Delta MAB\)


Các câu hỏi tương tự
Hiếu Trần Trung
Xem chi tiết
vietanh311
Xem chi tiết
Ánh Dương
Xem chi tiết
Tử Ái
Xem chi tiết
dsadasd
Xem chi tiết
Xuân Mai
Xem chi tiết
Thành Vũ
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phú Nguyễn
Xem chi tiết