Sửađề: cát tuyến ADE
a: Sửa đề: ABOC
góc OBA+góc OCA=90+90=180 độ
=>OBAC nội tiếp
b: Xet ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AD*AE=AB^2=3*R^2
=>AD*2AD=3R^2
=>AD^2=3/2*R^2
=>\(AD=R\cdot\sqrt{\dfrac{3}{2}}\)
Sửađề: cát tuyến ADE
a: Sửa đề: ABOC
góc OBA+góc OCA=90+90=180 độ
=>OBAC nội tiếp
b: Xet ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AD*AE=AB^2=3*R^2
=>AD*2AD=3R^2
=>AD^2=3/2*R^2
=>\(AD=R\cdot\sqrt{\dfrac{3}{2}}\)
cho đường tròn tâm O từ điểm A nằm ngoài đường tròn kẻ tiếp tuyến AB,AC . Kẻ cát tuyến AED ko đi qua tâm ( E nằm giữa D và A). Gọi I là trung điểm của DE .OA cắt BC tại H, BI cắt đường tròn tại M chứng minh
a) Tứ giác ABIO nội tiếp
b)AH.AO = AE.AD
c)CM song song ED
d)góc HÉC bằng góc BED
Cho (O; 5cm), điểm A nằm ngoài đường tròn sao cho OA = 10cm. Qua A vẽ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm). Qua A kẻ cát tuyến không qua O cắt đường tròn (O) tại điểm C và D (C nằm giữa A và D). H là trung điểm của CD. Lấy điểm E đối xứng với B qua OA. Tính chu vi của tứ giác ABOE, ta được kết quả:
: Từ điểm A nằm bên ngoài đường tròn (O) vẽ cát tuyến ADE không đi qua tâm O và hai tiếp tuyến AB, AC đến đường tròn tâm (O). OA cắt BC tại H, DE cắt đoạn BH tại I. Chứng minh: a/ OA ⊥BC tại H và AB2 = AD.AE b/ Tứ giác DEOH nội tiếp. c/ AD.IE = AE.ID
Cho đường tròn (O; R) và điểm a nằm ngoài đường tròn (sao cho OA> 2R). Qua điểm A vẽ hai tiếp tuyến AB, AC (B, C là tiếp điểm). Vẽ đường kính CE của đường tròn (O), AE cắt (O) tại điểm thứ hai là F.
a) Chứng minh: Tứ giác ABOC nội tiếp và OA vuông góc với BC tại H
b) Chứng minh: AB2= AE. AF và FHOE nội tiếp
Bài 4 : 3 điểm Cho đường tròn tâm O, từ điểm A nằm bên ngoài đường tròn ( O ), vẽ hai tiếp tuyến AB và AC với đường tròn ( B, C là hai tiếp điểm ). Kẻ dẫy CD song song với AB. Đường thẳng AD cắt AND đường tròn ( O ) tại E. a). Chứng minh tứ giác ABOC nội tiếp; b). Chứng tỏ A * B ^ 2 = AE . AD c). Chứng minh AOC =ACB V tilde a tam giác BDC cân
Từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC (B,C là các tiếp điểm ), đường thẳng qua A cắt đường tròn (O) tại D và E (D nằm giữa A và E, dây DE không đi qua tâm O). Gọi H là trung điẻm của DE, AE cắt BC tại K
a) Chứng minh tứ giác ABOC nội tiếp, xác định tâm đường tròn nội tiếp tứ giác ABOC
b) Chứng minh HA là tia phân giác của góc BHC
c) Chứng minh \(\dfrac{2}{AK}\)=\(\dfrac{1}{AD}\)+\(\dfrac{1}{AE}\)
Cho 1 điểm M nằm bên ngoài đường tròn (O; 6cm). Kẻ hai tiếp tuyến MN, MP (N, P là hai tiếp điểm) của đường tròn (O). Vẽ cát tuyến MAB của đường trong (O) sao cho đoạn thẳng AB=6cm với A, B thuộc đường tròn (O), A nằm giữa M và B.
a) Chứng minh tứ giác OPMN là tứ giác nội tiếp
b) Gọi H là trung điểm đoạn thẳng AB. So sánh góc MON và góc MHN
c) Tính diện tích hình viên phân giới hạn bởi cung nhỏ AB và dây AB của hình tròn tâm (O)
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Qua A kẻ 2 tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm)
a) Chứng minh: 4 điểm A,B,O,C cùng thuộc một đường tròn
b) Kẻ cát tuyến ADE nằm giữa AO và AB (D nằm giữa A và E), kẻ các tiếp tuyến tại D và E cắt nhau tại S. Nối BC cắt OA tại H. Chứng minh: R^2=OH.OA và 3 điểm S, B,C thẳng hàng
Bài 13 Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thắng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng: a) Tứ giác MAOB là tứ giác nội tiếp và MC.MD = OM^2 - R^2 b) Bốn điểm O, H, C, D thuộc một đường tròn.