Cho hình trụ có chiều cao h = a 3 bán kính r = a . Gọi O và O’ lần lượt là tâm của hai hình tròn đáy. Hai điểm A,B thuộc hai đường tròn đáy sao cho A B = 2 a . Tính số đo góc giữa hai đường thẳng AB và OO’
A. A B , O O ' = 30 0
B. A B , O O ' = 60 0
C. A B , O O ' = 45 0
D. A B , O O ' = 90 0
Cho nửa đường tròn tâm O, đường kính AB ,vẽ điểm S ở bên ngoài nửa đường tròn sao cho hai đoạn thẳng AS và BS cắt nửa đường tròn nói trên tại C và D .AD cắt BC tại H , hai đường thẳng AB và SH cắt nhau tại E.
a) chứng minh tứ giác ACHE nội tiếp đường tròn
b) chứng minh hai góc HED va HBD bằng nhau
c) chứng minh hai góc CEH va HED bằng nhau
d) biết sđ cung BD =60 độ ,tính số đo góc ECH
Cho (O ; R), đường kính AB. Trên đường tròn lấy điểm C sao cho BC bằng R. Từ B vẽ tiếp tuyến với đường tròn, tiếp tuyến này cắt đường thẳng AC tại D
a, Cm tam giác ACB vuông tại C?
b, Tính AC , BD theo R.
c, Vẽ đường tròn ngoại tiếp tam giác CBD, gọi O' là tâm đường tròn này. Cm O'C là tiếp tuyến của (O) và AB là tiếp tuyến của (O').
d, Gọi I là tâm đường tròn nội tiếp tam giác ABD. Tính OI theo R.
Cho khối trụ có bán kính đáy R và có chiều cao h = 2 R . Hai đáy của khối trụ là hai đường tròn có tâm lần lượt là O và O'. Trên đường tròn (O) ta lấy điểm A cố định. Trên đường tròn (O') ta lấy điểm B thay đổi. Hỏi độ dài đoạn AB lớn nhất bằng bao nhiêu?
A. A B m ax = 2 R 2
B. A B m ax = 4 R 2
C. A B m ax = 4 R
D. A B m ax = R 2
Cho đường tròn tâm O có đường kính AB=2a nằm trong mặt phẳng (P). Gọi I là điểm đối xứng với O qua A. Lấy điểm S sao cho SI vuông góc với mặt phẳng (P) và SI=2a. Tính bán kính R của mặt cầu qua đường tròn tâm O và điểm S
A. R = a 65 4
D. R = a 65 16
C. R = a 5
D. R = 7 a 4
Cho hình trụ có chiều cao h = a 3 , bán kính đáy r = a . Gọi O, O' lần lượt là tâm của hai đường tròn đáy. Trên hai đường tròn đáy lần lượt lấy hai điểm A, B sao cho hai đường thẳng AB và OO' chéo nhau và góc giữa hai đường thẳng AB và OO' bằng 30 ° . Khoảng cách giữa hai đường thẳng AB và OO' bằng:
A. a 6 2 .
B. a 3 .
C. a 3 2
D. a 6 .
Cho mặt cầu S tâm O bán kính 3cm. Điểm A nằm ngoài mặt cầu và cách O một khoảng bằng 5cm. Đường thẳng AB tiếp xúc với mặt cầu, B là tiếp điểm. Độ dài đoạn thẳng AB là
A. 4 cm
B. 5 cm
C.. 3 cm
D. 2 3 cm
Cho mặt cầu (S) tâm (O) bán kính 3cm. Điểm A nằm ngoài mặt cầu và cách O một khoảng bằng 5cm. Đường thẳng AB tiếp xúc với mặt cầu, B là tiếp điểm. Độ dài đoạn thẳng AB là
A. 5cm.
B. 4cm.
C. 3cm.
D. 2 3 cm.
Cho hình trụ có chiều cao h = a 3 , bán kính đáy r = a. Gọi O,O’ lần lượt là tâm của hai đường tròn đáy. Trên hai đường tròn đáy lần lượt lấy hai điểm A, B sao cho hai dường thẳng AB và OO’ chéo nhau và góc giữa hai đường thẳng AB với OO’ bằng 300. Khoảng cách giữa hai đường thẳng AB và OO’ bằng :
A. a 6
B. a 6 2
C. a 3
D. a 3 2