~.~
Đặt x2 = t, phương trình trở thành:
A(x) = t2 + 2t + 4
= (t2 + 2t + 1) + 3
= (t + 1)2 + 3 > 0 với mọi x \(\in\)R
=> x4 + 2x2 + 4 > 0 với mọi x \(\in\)R (đpcm).
_Kik nha!! ^ ^
~.~
Đặt x2 = t, phương trình trở thành:
A(x) = t2 + 2t + 4
= (t2 + 2t + 1) + 3
= (t + 1)2 + 3 > 0 với mọi x \(\in\)R
=> x4 + 2x2 + 4 > 0 với mọi x \(\in\)R (đpcm).
_Kik nha!! ^ ^
cho đa thức A(x)=x^4+x^2 +4 chứng tỏ rằng A(x) >0 với mọi x thuộc R
Cho đa thức A(x) =x^4+2x^2 + 4 .Chứng tỏ rằng A(x)>0 với mọi x thuộc R
Cho đa thức A(x) = x4 + 2x2 + 4.
Chứng tỏ rằng A(x) > 0 với mọi x thuộc R
cho đa thức p(x)= 2x⁴+3x²+1 a) Tính P(0); P(1); P(-2) b) Chứng tỏ rằng P(a)>0 với mọi a thuộc R
Cho đa thức Ax= \(x^4+x^2+4\)chứng tỏ rằng Ax>0 với mọi x\(\in\)R
Cho hai đa thức
A ( x ) = x 5 + x 2 + 5 x + 6 - x 5 - 3 x - 5 , B ( x ) = x 4 + 2 x 2 - 3 x - 3 - x 4 - x 2 + 3 x + 4
c. Chứng tỏ rằng x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x)
Chứng tỏ rằng đa thức A( x ) = 0 - x^5 + 2 ko có nghiệm với mọi số thực x
a,Cho đa thức f(x)=ax+b (a khác 0). Biết f(0)=0, chứng minh rằng F(x)=-f(-x)với mọi x
b,Đa thức f(x)=ax^2=bx+c (a khác 0).Biết F(1)=F(-1), chứng minh rằng f(x) với mọi x
Cho đa thức P(x) = c + bx + ax ^ 2 Biểt P(x) =0, với mọi x. , Chứng tỏ a = b = c = 0