Cho cấp số cộng có tổng của n số hạng đầu tiên được tính bởi công thức S n = 4 n − n 2 . Gọi M là tổng của số hạng đầu tiên và công sai của cấp số cộng đó. Khi đó :
A. M=7
B. M=4
C. M= -1
D. M=1
Cho cấp số cộng có tổng của n số hạng đầu tiên được tính bởi công thức S n = 4 n − n 2 . Gọi M là tổng của số hạng đầu tiên và công sai của cấp số cộng đó. Khi đó :
A. M = 7
B. M = 4
C. M = -1
D. M = 1
Ba số phân biệt có tổng 217, là các số hạng liên tiếp của một cấp số nhân, theo thứ tự đó chúng lần lượt là số hạng thứ 2, thứ 9 và thứ 44 của một cấp số cộng. Biết tổng của n số hạng đầu tiên của cấp số cộng là 820, khi đó n bằng
A. 21
B. 42
C. 20
D. 17
Cho cấp số cộng có u 4 = - 12 , d = 3 Khi đó tổng của 16 số hạng đầu tiên của cấp số cộng là
A. -24
B. 24
C. -26
D. 26
Cho cấp số cộng u n có công sai d = − 3 và u 2 2 + u 3 2 + u 4 2 đạt giá trị nhỏ nhất. Tính tổng S 100 của 100 số hạng đầu tiên của cấp số cộng đó.
A. S 100 = − 14400.
B. S 100 = − 14250.
C. S 100 = − 15480.
D. S 100 = − 14650.
Cho cấp số cộng u n có công sai d = -3 và u 2 2 + u 3 2 + u 4 2 đạt giá trị nhỏ nhất. Tính tổng S 100 của 100 số hạng đầu tiên của cấp số cộng đó.
A. S 100 = -14650
B. S 100 = -14400
C. S 100 = -14250
D. S 100 = -15450
Cho cấp số cộng u n có công sai d = -3 và u 2 2 + u 3 2 + u 4 2 đạt giá trị nhỏ nhất. Tính tổng s 100 của 100 số hạng đầu tiên của cấp số cộng đó.
A. s 100 = - 14550
B. s 100 = - 14400
C. s 100 = - 14250
D. s 100 = - 15450
Cho cấp số cộng u n có công sai d = − 3 và u 2 2 + u 3 2 + u 4 2 đạt giá trị nhỏ nhất. Tính tổng S 100 của 100 số hạng đầu tiên của cấp số cộng đó.
A. S 100 = − 14650
B. S 100 = − 14400
C. S 100 = − 15450
D. S 100 = − 14250
Một dãy số tăng là cấp số cộng có 11 số hạng. Tổng các số hạng bằng 176. Hiệu giữa số hạng cuối và số hạng đầu bằng 30. Số hạng đầu tiên của cấp số cộng này là
A. 1
B. 4
C. 7
D. 10