Cho tam giác ABC vuông tại A, đường tròn (O) nội tiếp tam giác ABC tiếp xúc với AB,AC lần lượt tại D,E
a)ADOE là hình gì? Vì sao?
b)Tính bán kính của (O) biết AB=3cm, AC=4cm
Cho tam giác ABC vuông tại A với AB < AC. Giả sử tồn tại hai đường tròn (P) và (Q) có bán kính bằng nhau và tiếp xúc với nhau sao cho đường tròn (P) tiếp xúc với cạnh AB và cạnh BC, đường tròn (Q) tiếp xúc với cạnh AC và cạnh BC . Gọi M, N thứ tự là tiếp điểm của BC với (P) và (Q). Chứng minh rằng tia phân giác của góc BAC đi qua trung điểm của MN.
Cho m hỏi bài này với ạ
Cho tam giác ABC có AB=3cm; BC=5cm; AC=4cm. Kẻ đường cao AH, gọi I, K lần lượt là tâm đường tròn ngoại tiếp tam giác HAB và tam giác HAC. Tính độ dài đoạn thẳng KI
Cho tam giác ABC nội tiếp đường tròn (O;R) có AB = 6cm AC =13cm đường cao AH bằng 3cm (H nằm ngoài BC). Tính R
(học sinh giải thích vì sao chọn đáp án đó)
câu 15 : Cho tam giác ABC có AB = 3cm, AC = 4cm , BC = 5cm. Bán kính đường tròn ngoại tiếp tam giác ABC là:
A. 5 cm
B. 2,5 cm
C. 10 cm
D. 3cm
cho tam giác ABC có 3 góc nhọn nội tiếp đg tròn tâm O kẻ các đg cao AF, CG của tam giác ABC (G thuộc AB, F thuộc BC) đg kính AD của đg tròn tâm O cắt BC tại E
1, chứng minh tứ giác AGFC nội tiếp 1 đg tròn
2, chứng minh EA.ED=EB.EC
3, gọi K và I lần lượt là hình chiếu vuông góc của F trên các cạnh CG và AC đg thẳng IK cắt cạnh AB tại H chứng minh HF\(\perp\)AB
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Các đường cao AD, BE cắt nhau tại H. Tiếp tuyến tại A của (O) cắt đường thằng BC tại M.
a) C/M tứ giác DHEC nội tiếp
b)CM 4 điểm A,B,D,E cùng thuộc 1 đg tròn
c)CM MA2=MB.MC
d) AD cắt (O) tại điểm thứ hai là I.Vẽ đường kính AK của (O).CM BK=CI
e) Kẻ IF vuông góc với AB (F thuộc AB). FD cắt AC tại .CM IN//BE
Giải hộ em câu d và e thôi ạ mấy câu kia giải hay không cũng được.
Cho tam giác ABC nhọn nội tiếp đường tròn ( O,R ). Gọi M và I là trung điểm của BC và AC. Giả sử O nằm trong tam giác AMC hoặc O nằm giữa A và M .
a) Chu vi tam giác MIC > 2R
b) Chu vi tam giác ABC > 4R
Cho đường tròn (O;3cm) và một điểm M cách O một khoảng bằng 6cm. Từ M kẻ tiếp tuyến MA đến đường tròn (A là tiếp điểm). a) Tính MA. b) Từ M kẻ tiếp tuyến thứ hai MB đến đường tròn (B là tiếp điểm). Chứng minh MO AB. c) Chứng minh tam giác MAB là tam giác đều và tính diện tích của tam giác này.