Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tạ Hữu Việt

Cho biểu thức :

\(P=\frac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)

a) Tìm ĐKXĐ của x và y để P xác định . Rút gọn P

b) Tìm x , y nguyên thỏa mãn phương trình P = 2

Nguyễn Thị Diễm Quỳnh
8 tháng 10 2019 lúc 20:30

a) ĐKXĐ : \(x,y\ge0;y\ne1;x+y\ne0\)

\(P=\frac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)

\(=\frac{x\left(1+\sqrt{x}\right)-y\left(1-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}\)

\(=\frac{\left(x-y\right)+\left(x\sqrt{x}+y\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+x-\sqrt{xy}+y-xy\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-\sqrt{y}\left(\sqrt{x}+1\right)+y\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)\left(1+\sqrt{y}\right)}\)

\(=\frac{\sqrt{x}-\sqrt{y}+x-y\sqrt{x}}{1-\sqrt{y}}=\frac{\sqrt{x}\left(1-\sqrt{y}\right)\left(1+\sqrt{y}\right)-\sqrt{y}\left(1-\sqrt{y}\right)}{1-\sqrt{y}}\)

\(=\sqrt{x}+\sqrt{xy}+\sqrt{y}\)

Vậy P \(=\sqrt{x}+\sqrt{xy}+\sqrt{y}\)

b) ĐKXĐ : \(x,y\ge0;y\ne1;x+y\ne0\)

\(P=2\Leftrightarrow\) \(\sqrt{x}+\sqrt{xy}+\sqrt{y}=2\) ( * )

\(\Leftrightarrow\sqrt{x}\left(1+\sqrt{y}\right)-\left(\sqrt{y}+1\right)=1\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{y}+1\right)=1\)

Có : \(1+\sqrt{y}\ge1\Rightarrow\sqrt{x}-1\le1\Leftrightarrow0\le x\le4\Rightarrow x=0;1;2;3;4\)

Thay x = 0 ; 1 ; 2 ; 3 ;4 vào ( * )

Ta có các cặp giá trị : x =4 ; y = 0 và x = 2 ; y = 2 ( TM )


Các câu hỏi tương tự
Đoàn Đặng Bảo Trâm
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Đặng Minh An
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Phan Thị Tuyết Mai
Xem chi tiết
Nguyễn Bạch Gia Chí
Xem chi tiết
Đào Ngọc Quý
Xem chi tiết
nguyễn thị hà my
Xem chi tiết